

FACTSHEET RISK ASSESSMENT AND MAPPING ACTIVITIES

Integrated heavy rainfall risk maps for the City of Graz – Catchment Stufenbach and Stiftingbach

Where was it implemented?	Map example:
Austria, Steiermark, Graz, Stufenbach catchment and part of the lower Stiftingbach catchment	
Problem/background	
Parts of the City of Graz were frequently affected by heavy rain events. On 16 th April 2018 a major event has hit the southwestern part of city center causing flooding of underpasses, cellars, underground garages and of a shopping center. Future events of a comparable intensity in other parts of the city are possible. Currently only flow path maps are available as indication of a possible threat. Moreover, in case of a heavy rain event the city is facing the challenge of a combined flooding from slope water, streams and the sewer system. Hazard and risk maps, considering the subsystems hillside location, urban streams, and urban space will support the city planning department and the department for civil protection to develop appropriate measures.	
איטנפטוטו נט מפאפנטף מאאיטאוומנפ ווופמטוופג.	Source: RIOCOM

Description of methodological background and outcomes

An interactive decision support system (Visdom, <u>http://visdom.at/</u>) was used to simulate and visually analyze numerous, alternative heavy storm scenarios. The model integrates and couples state-of-the-art components for hydrology, surface runoff, and sewer transport.

The model solves the 2D Saint-Venant-Equation with a finite difference method to calculate the water depth and the flow velocity on the surface. The theoretical background is shown in the openly accessible publications of Buttinger-Kreuzhuber et al. (2019) and Horváth et al. (2020) Hydrological rainfall-runoff components such as interception and soil infiltration are tightly integrated into the raster-based solver. The raster cell parameters for roughness, infiltration and interception are derived from land use and soil data. The hydrodynamic sewer transport model is coupled with the surface simulation at each storm drain or manhole of the sewer system. The fast GPU-based solvers enable the detailed simulation of large parameter variations within a few hours to calibrate them according to historical measurements.

Area and event characterisation

Area type	Topography	
Urban/semi-urban to rural	Hilly to lowland (Stufenbach); Hilly (Stiftingbach)	
Land cover/land use distribution	Event	
Stufenbach: Farmer land: 17 %, Buildings: 8 %, Bushland: 2 %, Impervious: 11 %, Forest: 34 %, Water: <1 %	Observed event (06.05.2013), Synthetic/design events (Model rain 30, 45, and 60 min T10, T30, T50, T100)	
Stiftingbach: Farmer land: 17 %, Buildings: 11 %, Bushland: 1 %, Impervious: 22 %, Forest: 28 %, Water: <1 %		
Classifications comes from the land use data.		

Receptors	Flood type		
Buildings, technical infrastructure	Complex flooding (flash, pluvial and sewer)		
Specifications of method/measure and data demands and outputs			
Level of complexity	3		
Adressed SPRC element	Source, pathway, receptor, consequence		
Method group	Process-based approach for hazard, empirical for vulnerability		
Spatial scale(s) of application	Raster width 0.5 meters, total area limited only by the total number of raster cells		
Time scale/resolution	Calculation timesteps: flexible/automatic, output timesteps: flexible, minutes to hours		
Input datasets (type and scale/resolution)	Digital Elevation Model (raster: 0.5 m)		
	Land use data (vector: polygon)		
	Soil data (vector: polygon)		
	Buildings (3D-City-Model) (3D-Objects)		
	River and retention basin geometry (vector: line)		
	Sewer system data (vector: line, point, polygon)		
	Event documentation (operation protocols of fire departments, documentation by affected citizens) (vector: point; texts, images)		
	Measured precipitation		
	Design precipitation values		
Output datasets (type and scale/resolution)	Water levels and flow velocities as an output-timeseries along the event duration in each raster cell, 3D		
Description of implementation			
Implementation	Users (reported/designated)		
• 04/19 - 11/19	• City of Graz, Building Department, Department Green Space and Waters, Departement Civil Protection		
Initiator/responsible	Involved stakeholders		
• Office of the Styrian Government,	City of Graz, Building Department		
Department 14 Water Management, Resources and Sustainability	City of Graz, Department Green Space and Waters		
 External Contractor: RIOCOM - Ingenieurbüro für KTWW Handelskai 92 1200 Wien <u>www.riocom.at</u> 	• City of Graz, Departement Civil Protection		
 Co-Contractor: VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH Donau-City-Straße 11 1220 Wien <u>www.vrvis.at</u> 			

Lessons-learned					
Main suc	ccess factor:	Main challenge:			
 Good simu data deta even Coup mode surfa 	d agreement between observed and lated flood areas based on the damage a provided by the fire department and a hiled event documentation of the 2013 at provided by the City of Graz. Doling of a fast raster based hydrological el with a hydrodynamic sewer and ace runoff model.	 Plausibilisations of surface runoff models rely mainly on observations, hence documentation of events and damages is essential. Reliable parameters need to be evaluated. 			
Synergie	es/beneficial aspects:	Conflicts/Constraints:			
• The cont integ	used modelling software (Visdom) ains all relevant models in one highly grated flood model (sewer, hydrology, ace runoff).	 The model results have a strong dependency on the up-to- dateness of the surface data. Future events will differ from the historic as well as from the synthetic events. 			
• Due base very	to the explicite solver method and GPU- ed implementation, the simulation time is short.				
• The chan are e	model is very flexibel to structural nges (storages and protection measures easily added).				
Key message to others starting with a similar task Contact		Contact			
Key message to others starting with a similar taskContact"Integrating a sewer model into an urban flood model shows the most significant impact where sewer overflows occour."Office of the Styrian Government, Department 14 Water Management, Resources and Sustainability, abteilung14@stmk.gv.at"The quality of the Digital Elevation Model (DEM) has the greatest influence on the results. Hence, verification of the DEM data needs to be accomplished."Office of the Styrian Government, Department 14 Water Management, Resources and Sustainability, abteilung14@stmk.gv.atRIOCOM Engineering Office for Environmental Engineering and Water Management, office@rioco m.atDI Dr. Jürgen Waser VRVis jwaser@vrvis.at					
References					
Buttinge	Buttinger-Kreuzhuber, Andreas; Horváth, Zsolt; Noelle, Sebastian; Blöschl, Günter; Waser, Jürgen (2019): A fast				

Buttinger-Kreuzhuber, Andreas; Horvåth, Zsolt; Noelle, Sebastian; Blöschl, Günter; Waser, Jürgen (2019): A fast second-order shallow water scheme on two-dimensional structured grids over abrupt topography. In: Advances in Water Resources 127, S. 89-108. DOI: 10.1016/j.advwatres.2019.03.010.

Horváth, Zsolt; Buttinger-Kreuzhuber, Andreas; Konev, Artem; Cornel, Daniel; Komma, Jürgen; Blöschl, Günter et al. (2020): Comparison of Fast Shallow-Water Schemes on Real-World Floods. In: J. Hydraul. Eng. 146 (1), S. 5019005. DOI: 10.1061/%28ASCE%29HY.1943-7900.0001657.