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1. Context and goals of this study 

1.1. Project context  

Heavy rain events are a major environmental risk in Europe: they can hit any location with only very short 

warning time. Every year people die, thousands lose their homes, and environmental damages like water 

pollution occur. And the risks of heavy rain events are increasing all over Europe. In the project RAINMAN, 

partners from 6 countries have joined to develop and test innovative methods and tools for the integrated 

management of heavy rain risks by local, regional & national public authorities. These will be included in 

the RAINMAN-Toolbox, a set of five transferable tools and methods for municipalities and regional 

stakeholders.  

The first tool of this toolbox is concerned with assessing and mapping heavy rain risks. It builds the 

foundation of the other tools, which will have their focus on the areas with a high risk. This study will test 

if and how well it is possible to assess those risks by using statistical methods. 

 

1.2. Goals  

The goal of the RAINMAN project is “to  reduce  the  losses  in  the  natural  and  built  environment  

caused  by  heavy  rain” (Rainman n.d.). Therefore an identification is needed which regions are under 

risk of pluvial floods occurring after heavy rain events. One approach to assess these risks is the usage of 

statistical modelling methods. The goal of this approach is to predict pluvial flood risk using reports of 

past flood damages on agricultural land and location characteristics. With this it is possible to focus the 

tools of the project to areas that are actually at risk. Furthermore, it can recommend collecting specific 

data which is not available yet even if the methods don’t prove to be successful. 

After specifying the methods, the most destructive events of the investigation period are identified and 

further investigated. In this event analysis it shall be determined which seasons are typical for big events 

that cause pluvial flood damages. In a further step the question shall be answered, if the cause of the 

floods was a continuous low intensity rainfall or a spontaneous heavy rainfall. 

Based on this analysis the representative reported cells are investigated for their locations. The question 

is whether they have similar location values and therefore show locations with a higher vulnerability or if 

they differ. Each location variable is analysed separately to assess, if they show noticeable differences 

between cells with reports and cells without. 

The first goal of the statistical models is to identify significant variables and their influence on the flood 

damages. In the last step the model with the best prediction values shall be determined and further 

discussed on practical usability. 

 

1.3. Approach and structure 

The first step of this study is building knowledge on the state of the art of prediction models for pluvial 

flood risk assessment. In the next step, out of the different data sets characteristic values need to be 

extracted for each cell. This is done with the programmes ArcGIS 10.3 (ESRI 2016) and R 3.4.3 (R Core 

Team 2017). After separating pluvial and fluvial flood damages an analysis based on single heavy rain 

events is conducted. Here the reports of pluvial flood damages are ordered by date and compared to the 

seasonal and meteorological conditions like precipitation amount and antecedent moisture conditions. The 

aim of this step is to identify typical seasons and to get a better understanding of the generating 

processes. Additionally, the locations of some of the affected cells are compared to each other before 

each location parameter is split into cells with reported pluvial flood damages and cells without. For that 

a presence/absence raster is calculated with a spatial resolution of 1x1km². Then the location analysis is 
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summarised and possible interactions are identified. In the statistical modelling two different models are 

presented, one generalized linear model (GLM) and one random forest. Each model has two different data 

frames as inputs: the original data frame and the second one with aggregated classes. For the GLM 

weights are added and compared to each other. The random forest is carried out without weights, 

because no weighting is implemented in the current version of the package (v.4.6-14). 

The report is structured as follows: First the data is described in detail with the study area first followed 

by each variable. Then the methods for the two analysis steps and modelling are presented. After that the 

results of the event and location analysis are shown separately. The final results are from the statistical 

models where the best results are presented and compared to each other through prediction diagnostics. 

At the end the results are summarized, discussed and the whole study is then summarized in the 

conclusion. 
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2. Review of current literature 

Pluvial floods have been recognised as problem only a few years ago, and a number of studies are 

currently being published in this novel research field. However, the current literature on pluvial flooding 

focuses primarily on assessing which parts of a city are most likely to be flooded. Frequently, process-

based analysis methods are used to calculate pluvial flood risk maps, while statistical methods are mainly 

used to calculate precipitation values. A few examples are shown below. 

Similar to our study, Sörensen and Mobini (2017) used insurance claims for their study. They calculated the 

maximum rainfall volumes for 15 minutes to 12 days at a 50*50m grid at the city of Malmö, Sweden. Based 

upon this, they created a presence/absence grid of flooded cells and assigned them to systems, which 

indicated the drainage system type and the distance to major flow paths. They came to the conclusion 

that most of the biggest events were caused by heavy rainfall and occurred in summer. The amount of rain 

that fell was exceeded the sewerage system capacities, so about half of the amount was flowing overland. 

While the severe flooding events were caused by consistent rainfall during several days over the whole 

city, a few events were caused by highly localized rainfall. Events caused by the consistent rainfall were 

more evenly spread while the latter were around the main sewer where the water was led to lower areas.  

Guerreiro et al. (2017) calculated a 10 year return period (RP10) of rain for most of Europe, using a 

regression model, and tried to predict how many from the over 500 cities are going to be flooded. To 

create an urban flood model they used the City Catchment Analysis Tool based on a DEM, which provides a 

simulation of urban hydrodynamics. The main problem they encountered was the scarce data availability 

especially for hourly rainfall data and DEMs with a high spatial resolution. They found that most urban 

floods were caused by interplay of heavy rainfall and the elevation of the cities. Cities in the north and 

west coastal areas of Europe had a smaller percentage flooded than Mediterranean or continental ones.  

With a focus on pluvial flood in correlation to urban development Skougaard Kaspersen et al. (2017) 

selected four cities in Europe for their study “Comparison of the impacts of urban development and 

climate change on exposing European cities to pluvial flooding”. Their choice fell on Vienna, Nice, 

Strasbourg and Odense, which show a quite different setting. They used a combined remote-sensing and 

flood-modelling approach to simulate the occurrence and extent of flooding. With the Horton’s infiltration 

model and the Overland flow model MIKE 21 for the run-off and infiltration models, they got the result 

that for every 1% of absolute imperviousness 0 to 10% higher flooding is to be expected.  

About ten years earlier in Britain the “Flooding from Other Sources” project was founded to tackle the 

flooding from other sources than sea or rivers. The two following studies were a result of this project. 

A study by Hankin et al. (2008) was carried out with the aim of finding methods to improve pluvial flood 

mapping in urban areas. They reviewed available methods and difficulties in flood modelling. E.g. if an 

urban potential flood hazard map is needed and only limited financial resources are available, data with 

lower accuracy has to be used. They analysed four different approaches: Creating a buffer around 

historical flooding data, topographic analysis of LiDAR data, routing of blanket rainfall over a digital 

elevation model, and various levels of integration of sewer/drainage network models with other sources 

and pathways such as roads and small watercourses.  The noticeable approach is the third one but the 

most important part for any of the techniques described in this study is accurate topographic data. 

Falconer et al. (2009) summarized technical possibilities of providing warning systems for pluvial floods in 

urban areas based on the RF5 (“Feasibility study into expanding flood warning to cover other flood risks”) 

project. According to conclusions from the RF5 project it is technically feasible to provide some warning 

service given planned improvements in the UK Met Office radar network. While the Pluvial Extreme Event 

Planning system (PEEPs) approach, which is supposed to map potentially vulnerable areas, doesn’t have a 

stochastic element it still has many advantages over other methods like low costs or a broad indication of 

risk. For the PEEP only the topography was used to identify vulnerable areas but it was considered as 

sufficient as the sewer systems capacities were exceeded in such heavy rain events. Together with the 
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other approaches highlighted in their study they should be able to assist organisations in dealing with 

different types of flooding. 

Switzerland also identified pluvial floods (here integrated into surface water floods) as threat to society, 

which is pointed out in the following three studies: 

Bernet, Prasuhn, and Weingartner (2017) aimed with their study to provide a method to differentiate 

between surface water floods and fluvial floods and assess the relevance of surface water floods in 

context of damages. The first goal was approached by assessing the distance of damage claims to rivers or 

lakes with respect to known fluvial flood zones. The main disadvantage of that method is that surface 

water floods, which eventually reached a watercourse, were partially classified as fluvial (a possibly more 

accurate manual classification proved to be too time-consuming and difficult). With this classification the 

study concluded that surface water floods caused as much damage claims as fluvial floods, but only one 

quarter of the total loss. The lower damages can be attributed to the lower water depth from surface 

water floods and the fact that the calculated damages stem only from buildings. 

Bernet et al. (2018) used several hydrodynamic models to predict surface water floods in rural areas. They 

used a binary response variable (wet or dry) and a contingency table to assess the model performance. 

However, due to biased predictions about effective precipitation and insufficient representation of 

topographic structures, their grid-based models were not able to predict flooded areas due to surface 

water flooding. Instead of improving the addressed shortcomings, they recommended the communication 

and quantification of the uncertainties of the model. Finally, they recommend using a standardized 

method for the documentation and reporting of surface water floods. 

With four test cases, Zischg et al. (2018) compared two 2D inundation models to each other: one is based 

on insurance claims and the other on observed inundation areas. For model validation they also used 

validation metrics based on a contingency table. Both models produced similar results, but the model 

based on insurance claims was better concerning areas with high densities of values at risk. Nevertheless, 

insurance data has to be carefully pre-processed, for example surface water floods and groundwater 

floods should be filtered out, which was not done for that study. Another advantage of insurance data is 

that they also covers small events and are more consistent over time. Whether insurance data is able to 

reconstruct flood areas of past events remains an open question. The main limitation for that approach, 

according to this study, remains in the limited data availability due to privacy protection. 

As a fellow study from Austria, Zahnt, Eder, and Habersack (2018) wrote a paper about challenges through 

pluvial floods titled “Herausforderungen durch pluviale Überflutungen - Grundlagen, Schäden und 

Lösungsansätze“. Their research area is in four communities in Styria, Austria, where they researched why 

and how damages occurred and how the citizens protect themselves. For this purpose, the flooding season 

of 2016 was analysed, events documented and affected persons interviewed. In the end, they concluded 

that there is not enough knowledge and education about the risk of pluvial floods and there is a high need 

for action. 

The most similar study in comparison to ours is called “Assessing urban areas vulnerability to pluvial 

flooding using GIS applications and Bayesian Belief Network model” from Abebe, Kabir, and Tesfamariam 

(2018). In their research, they also use a number of possible influencing factors (land cover, population 

density, slope, soil drainage class, drainage density, DEM, rainfall and drainage capacity) with the goal of 

obtaining a risk map for Toronto, Canada. As information about flooding events they use basement 

flooding. They focus their method on the Bayesian Belief Network model which is similar to a statistical 

method. The model sets conditional probabilities for each variable and their child nodes. The main point 

in using this approach was that it can quantify uncertainty and consider interdependencies between the 

variables. They conclude that the most influential factor is population density followed by land cover 

related parameters and slope. 
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3. Data 

With almost 12,000km² Upper Austria is the fourth biggest federal state of Austria (‘Land Oberösterreich - 

Administrative Gliederung’ n.d.). The climate is mostly Central European transitional characterised by 

oceanic and continental influences. The mean air temperature over the years 1981 to 2010 is 7.6 °C. The 

average annual precipitation amounts to 1,150 mm, but there are strong regional differences over the 

study area. In the Bohemian mass it is the lowest with less than 800 mm while in the Alps it is at 1,600 to 

1,800 mm (‘Land Oberösterreich - Klima in Oberösterreich’ n.d.). 

The data investigated is a presence/absence raster of pluvial flood damages and 15 different variables 

with a possible influence on flood damages. From some of these variables, classes have been aggregated 

for technical reasons. The cell size in the applied overall raster is 1x1km*. 

 

3.1. Flood damage data 

The data on the flood damages are based on reports from the Austrian Hail Insurance. There, the 

agricultural flood damages are defined as “(…)flood damage near rivers as well as damage caused by 

heavy rainfall/slope water. In addition, damages fromcontinuous rainfall, followed by silting up and 

dying of the very young plants after hot subsequent phases. This means that damage is not only reported 

on hills, but also in flat areas” (Spira Yvonne 2018). As the data covers damages of agricultural land, flood 

damages for other land uses, like e.g. settlements is not considered. It is worth noting, that some 

variables might explain ideal agricultural land rather than pluvial flood vulnerability. The data of the 

locations of floods were delivered for the years 2007 to 2013 as shapefiles with 100x100 m cells, which 

contained information about the day of the flood (for 2007 and 2008) or the first and last day a flood 

occurred in the corresponding year (for 2009 to 2013). 

The main information source for the decision whether the reports were based on pluvial or fluvial floods is 

‘DORIS Atlas 4.0’ (2018) where the flood extents of 2002 and 2013 are shown. Additionally, newspapers 

like “meinbezirk.at” (Uibner Florian 2018) or “Vienna.at” (APA/Red 2013) have repeatedly reported larger 

damages caused by fluvial floods. It could also be the case that heavy rainfall caused flooding but the 

water flows into a river. To take this into account, floods at steeper slopes going down into a river were 

marked as “pluvial”. Furthermore connected flood cells that were located along a river were also marked 

as “fluvial”. In the end, 12.392 cells were marked as “pluvial” and cells marked as “fluvial” are no longer 

used. 

The reported pluvial flood events were finely combined and transformed into a presence absence raster 

(PA) with a resolution of 1x1km². The raster geometry is congruent with soil parameters and INCA 

precipitation data, as they provide the most variables. Every cell with at least one pluvial damage is 

coded with a value of one (“presence”), to be marked as a “pluvial flood damage” cell. All other cells are 

coded as zero (“absence”). There was also the option to use the count of flood reports as values, but due 

to the difficulties in distinguishing between pluvial and fluvial floods in some areas the weight would have 

been heavily shifted towards one or two small areas, and there were only few cells with a count greater 

than one. 

 

3.2. Climate and catchment characteristics 

3.2.1. Climate 

Rain data was provided by the Central Institution for Meteorology and Geodynamics (Zentralanstalt für 

Meteorologie und Geodynamik, ZAMG). This data is part of the INCA-Dataset, which has a spatial 

resolution of 1x1 km² and a temporal resolution of 15 minutes. For the event analysis a time series is 
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extracted for one representative cell and additionally aggregated to one hour and day. For the location 

analysis and modelling six different precipitation variables are extracted from this data, all representing 

average climate conditions of the seven-year observation period. We have also tested to use kriging 

interpolated rain data from the hydrological service network provided by eHYD (https://ehyd.gv.at) but 

this approach has been discarded because the interpolation errors were much higher compared to the 

INCA-Dataset and could not further improve the estimates. All rainfall variables of this study are therefore 

based on the INCA-Dataset. 

The first group consists of mean annual maximum precipitation sums of different aggregation periods, 

including 15min (Max_rain_15), one hour (Max_rain_h), one day (Max_rain_d) and seven-day precipitation 

sum (Max_rain_7d). We further used the mean absolute deviation of annual 15min precipitation maxima 

(Max_rain_15_mad) as a measure of inter-annual variability of intense precipitation events. The second 

group considers the number of days with heavy rainfall intensities, determined by threshold exceedance of 

the 15min precipitation sums. For our analysis, we used the exceedance of exceedances of 20mm 

(Rain_20) and 30mm (Rain_30).  

The INCA-Dataset stems from a combination of station data, radar data and elevation effects, which have 

been determined by the data providers using the following procedure: In a first step the rain measures 

from the stations are interpolated using inverse-distance-squared weights. The radar data, which has a 

higher spatial accuracy, is then aggregated to 15 minutes rain sums and rescaled using the station data at 

their positions. Then these two grids are combined with different weights depending on the radar return 

(cells, which are shielded by e.g. mountains get a lower weight). In the last step the elevation 

dependence is calculated by the interpolated topography of the stations and the interpolated 

precipitation in the valley. However this is only applied where the radar was ineffective. Unfortunately 

especially for high intensity rainfalls in summer at the 15min interval the mean relative analysis error is at 

around 50% (Haiden et al. 2011). For the event analysis this means that the shown amounts of rain can 

differ significantly from the actual rainfalls. Even variables that count how often a certain threshold is 

exceeded can become too high or too low. 

 

3.2.2. Topography 

The mean altitudes and mean slopes for each cell are calculated in ArcGIS 10.3 using a digital elevation 

model (DEM) with a spatial resolution of 10x10m and the “Spatial Analyst” toolbox for the altitude and the 

“3D Analyst” toolbox for the slope. The exposition was also calculated but dropped in the early phases of 

modelling, because of the missing explanatory power. The altitude and slope on the other hand are more 

likely to be significant, as they influence the movement of water directly. Additionally, a dataset on 

macro relief was available from the BORIS dataset of the Environment Agency Austria, but was not used 

due to the low spatial resolution. Adding it to our final dataset would have led to reduction of around 

1000 grid cells of our dataset, which was not tolerable for a single variable. 

 

3.2.3. Land use 

For the land use the CORINE Land Cover data set, Version 2012 was used, which is a shapefile with 44 

classes represented by their class number. With the “Conversion” toolbox it was converted into a raster, 

where each cell got the value of the class that covers most of the cell. The data were reclassified into 

seven main classes: sealed, forest, wetland, water, arable land, grassland and heterogeneous agricultural 

land. An alternative dataset of sealed land was not used, as preference was given to a more consistent 

classification as provided by the CORINE dataset. As the damage reports stem from agricultural land only, 

we expect that the agricultural classes will be more significant that other classes. Hence, the land use is 

expected to have a large discriminative power in the predictive models. 

 

https://ehyd.gv.at/
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3.2.4. Soil 

Each soil parameter used (except erosion) is taken from the eBOD dataset, which is freely available by the 

Austrian Federal Research Centre for Forests (BFW) as a grid with a spatial resolution of 1x1km². The 

dataset consists of 24 attributes but for this analysis only five of them are used. An additional soil variable 

could have been the soil moisture provided by the Technical University Vienna. However, its values only 

increased slowly after an intense rainfall and therefore were not a good indicator for soil moisture right 

before an event. In addition, the general water conditions have already been included in the eBOD data 

set. Another water-based variable, which was not used, is the groundwater from BORIS. Similar to the 

macro relief, it has a very low spatial resolution and therefore would have reduced the number of cells 

significantly. Generally, most of the soil variables might (at least for some part) indicate ideal agricultural 

land. However, they are expected to determine those agricultural areas with a higher risk of pluvial flood 

damage than others. This is supported by the observation, that soil types or soil water conditions differ. 

Erosion 

Soil erosion is understood as the natural process of removing soil through running water or wind (BFW 

2013). The data for it was provided by the Austrian Federal Office for Water Management (Petzenkirchen) 

and was already aggregated to 1x1km² raster cells, which contain the average, yearly erosion in kg/ha. It 

was modelled with data of soil, precipitation, slope inclination, slope length, land cover and soil 

protection (BMLFUW 2007). 

Soil type 

The soil types were formed after many years of the exposure to climate, vegetation, humans, water and 

wind, among other things (BFW 2013). In the eBOD dataset the soil types were split into 38 categories 

which were reclassified to their nine main types of relict soil, alluvial soil, gley, atypical soil, brown soil, 

pseudogley, soil form complex, rendzina and rangier, bog and others. In the category of others are 

included podsol, black soil and raw soil. Bog, alluvial soil and gley are in groundwater area while rendzina 

and rangier, brown soil, podsol, pseudogley and relict soil are not. Gley and pseudogley are very similar as 

they both have solid bedrock which hinders water to seep away. The biggest difference between the two 

is that gley is under the influence of groundwater and pseudogley stores especially rainwater for a longer 

period. A soil form complex is categorized if many soil types are located in a single cell and therefore no 

unambiguous categorization is possible (BFW 2013). 

Soil texture 

The soil texture describes the particle size composition. There are three main soil separates: clay 

(particles <0.002mm), silt (0.002-0.06mm) and sand (0.06-2.0mm). Additionally there is one more texture 

called loam, which consists of relatively high proportions of all three size groups. The soil texture 

determines the behaviour of the soil in relation to water, its aeration, its nutrient supply and fixation and 

much more. Clay soils are densely packed and often collect water, while sandy soils are the exact 

opposite. Silt soils possess characteristics of clay and sand but are more a combination of the undesired 

characteristics than the desired (BFW 2013). The soil textures were subdivided into 12 different sub 

classes, which were reduced to the main four of silt, sand, clay, loam and cells with no unambiguous 

assignment. 

Permeability 

The soil permeability indicated how good the ground can hold water. High values mean that water will go 

through very quickly and low values that it will take a longer time to pass through (BFW 2013). The 

permeability was divided into ten classes, which were reordered so they can be used as continuous 

variable going from low to high. 
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Soil depth 

The soil depth is the zone between the soil surface and the solid rock or extremely hardened horizon. In 

general the soil depth is classified into shallow (<30cm), medium (30-70cm) and deep soils (>70cm) but 

here we have 6 classes where 1 is strongly fluctuating and 2 – shallow going up to 6 – deep. With increasing 

soil depth more water can be stored, there are more nutrients and roots have more room to grow (BFW 

2013). 

Water conditions 

The water condition of the soil depends on various factors, including precipitation and groundwater 

conditions, soil type, humus conditions. They are mostly classified from very dry to wet. In addition, there 

are soils that are fluctuating so much that they don’t fit into these classes. They are referred to as 

alternating moisture, which can have more dry or wet phases (BFW 2013). For the analysis water 

conditions were resampled to 1 – inconsistent, 2 – alternating moisture with more dry phases to 4 – 

alternating with more wet phases and then 5 – dry to 17 wet. Even though being ordered, they can’t be 

categorized as a continuous variable, because of the alternating moisture class. 

 

3.3. Dataset structure 

The final data frame is summarized in Table 1. It consists of 9405 grid cells vs. 15 predictor variables and 

one dichotomous dependent variable (PA), which separates the dataset into 8136 cells without flood 

reports and 1269 cells where pluvial floods have been reported.  

Table 1: Summary of variables used in statistical modelling (for factor levels see Table 8) 

Variable Data 

type 

Description Unit 

PA Logical Presence/absence of reported flood 0/1 

Max_rain_15 Metric Mean maximum 15 min rain sum  mm (or l/m²) 

Max_rain_15_mad Metric Mean absolute deviation (MAD) 

of annual Max_rain_15 

mm (or l/m²) 

Max_rain_h Metric Mean maximum 1 hour rain sum mm (or l/m²) 

Max_rain_d Metric Mean maximum 1 day rain sum mm (or l/m²) 

Rain_20 Metric Number of 15 min rain sums >20l/m² 1 

Rain_30 Metric Number of 15 min rain sums >30l/m² 1 

Altitude Metric Mean altitude  m (or m.a.s.l.) 

Slope Metric Mean slope % 

Erosion Metric Mean erosion kg/ha 

Land.use Factor Land use 7 classes 

Soil.text Factor Soil texture 5 classes 

Soil.type Factor Soil type 10 classes 

Permeab. Ordinal Soil permeability 10 levels 

Depth Metric Soil depth  
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Water.con Factor Water condition 17 classes 
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4. Methods 

4.1. Event analysis 

Before going into more detailed analysis, it has to be determined which event should be used. By plotting 

all reports per year and month we get a general view when large events usually happened. In addition, we 

know in which years and months large events have taken place. After choosing one large event per year 

(in case a large event happened each year) they are further analysed and compared. First the rainfall in 

the whole study area is investigated, using a 26x26km window to represent the current event. From a 

selected cell three time series are extracted for a temporal window of five days (four days before the 

event to one day after), except the event of 2013 which is extended to four days after. For this cell, these 

time series show for each day the total rainfall sum and the maximum rain intensity reached in one hour 

and in 15 minutes. These are compared with the return periods provided by eHYD, which were calculated 

at the end of 2008. The primary purpose of the time series is to find out whether the reported damages 

were caused by a long lasting rainfall or a short but heavy one. It is also important to know if the soils 

were moist from rainfall in the previous days or dry.  

 

4.2. Location analysis 

The location analysis serves as a first visual assessment whether some location parameters might influence 

the risk for pluvial floods. As a continuation of the event analysis, the reported cells of each event window 

are compared to each other. This serves to answer the question of how the cells look like that got flooded 

in a specific event and if there are similarities between the different locations. This is then further 

expanded over the whole study area where the cells are separated in reports and no reports. Additionally 

the distribution of each location parameter over the study area is shown and analysed. At the end of this 

analysis comes a short summary where it is determined which classes will be excluded in the statistical 

models with aggregated classes. 

 

4.3. Statistical modelling 

Two statistical approaches are tested for the prediction: the linear logistic regression and the nonlinear 

random forest. Both of them are able to deal with a binary response variable and with continuous and 

factor explanatory variables. These two will be trained with two data sets and compared to each other 

and the other model using model quality assessment. 

The first of the two tested data sets contains all classes from all variables; the second data set uses 

aggregated variable classes that have been determined during the location analysis to give a parsimonious 

description of the study area, which are determined at the end of the location analysis. For Chen, Liaw, 

and Breiman (2004) one way to deal with imbalanced data is to reduce the number of cells without 

reported damage, which was tested in a third model. There, a buffer of 1km was drawn around each cell 

with reported damage and only the cells inside this buffer are used for modelling. However, the model 

was analysed at first, but at the end it was dismissed because of lack of success. 

 

4.3.1. Logistic regression 

Usually, in linear regression models the response variable is continuous, but in this case this variable is a 

factor with two possible outcomes (0, 1). So, the first relevant difference is that the outcome variable 

can’t be bigger than 1 or smaller than 0 and represents the predicted probability. Another difference is 

that the estimates of the independent variables aren’t as easy to interpret as in the normal model. In the 

logit model they are transformed into log-odds ratios, which may be retransformed to odds-ratios after 
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model fitting for easier interpretation of the results. The resulting values bigger than 1 are interpreted as 

increasing odds of presence with an increase of the variable and values between 0 and 1 decreasing odds 

(Hosmer and Lemeshow 2000). The variables do not need to be normalized as this is not an assumption for 

logistic regressions. An advantage of logistic regression is that weights can be added to deal with the 

imbalanced data. Here we chose weights of 1:7, because the imbalance of the data is roughly 7:1. 

The analysis proceeded as follows: In an initial modelling step, each variable is separately tested in a 

single model to determine its individual value for explaining pluvial flood damage. At the same time a 

heatmap is used to identify correlations between the variables. For each single model three pseudo R²-

values are calculated, which indicate the explanatory power of a model among similar models (Mangiafico 

2019). The calculated R² are from Nagelkerke, Cox and Snell and McFadden, with McFadden’s index being 

often preferred for logistic regressions. It has usually lower values than the other R² but values between 

0.2 and 0.4 are already considered really well. For the following forward stepwise regressions the variable 

with the highest R² is used in the first step. 

After splitting the data into a training set and test set (80:20), variables are added to the model based on 

Akaike's “An Information Criterion” (AIC), where a lower AIC indicates a more parsimonious model. 

Variables that do not change the AIC or even increase it are not added to the model. That way, if two 

variables are highly correlated, one of them is left out, because it does not contribute much more to the 

model. Additionally, interaction terms can be added to account for the correlations between the 

variables. The resulting model is checked for multicollinearity using the generalized variation inflation 

factor (GVIF). If multicollinearity can be detected, the variable with the highest GVIF has to be excluded. 

This process is repeated until no more multicollinearity can be detected. At the end, a non-sequential 

analysis of variance (“Anova”-function of the “car”-package) is carried out that tests how much each 

variable contributes to the model (after all the others) and if they are significant to the model with a 

likelihood ratio chi-square test. 

The final two models are used to predict the pluvial flood damage cells of the test set. The calculated 

prediction quality values are explained in chapter 4.3.3 and the predicted probabilities are then plotted 

over the whole study area. 

 

4.3.2. Random forest 

A Random forest (Breiman 2001) is an ensemble of decision trees, where each tree is randomized to a 

certain degree. Each tree is grown using a different bootstrap sample of the training data and the data 

that is not used is the test data. That way each data point would be in the test data around 36% of the 

times. For additional randomness at each split of the trees the best variable of only a subset of variables 

is chosen. With this method random forests perform very well in comparison to other machine learning 

methods like support vector machines and is robust against overfitting (Liaw and Wiener 2002). At the end 

each tree casts a vote for their most popular class and the class with the most votes is used by the random 

forest (Liaw and Wiener 2002; Wang et al. 2015). 

For the random forests there are no weights added, instead a cut-off is chosen similar to the one for the 

GLM. As described above the classification forest uses votes to determine which class gets selected. The 

"cutoff" specification of the "randomForest" function would default to 0.5, which means that the class that 

has the majority of votes "wins". Here different cut-offs are tested where each gives the minority class 

(cells with reports) an advantage of different scales. When the type “response” is chosen at the prediction 

of the test set the model predicts a class for each data point. Choosing the type “prob” predicts class 

probabilities for each cell similar to the GLM. 

In this study the R-package “randomForest” (Breiman et al. 2018) is used. It is used in the form of a 

classification forest, which then predicts the binary response variable. Even though the random forest of 

the “ranger”-package can be used with weights, which could be beneficial for the model, the cut-off 

cannot be chosen and for our study the cut-off is chosen to be more important. 
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For the random forests, there are no single-variable models that would make sense and there is no pseudo 

R² for classification forests. The relationships between the variables still require attention. Although they 

do not particularly harm the model, they have to be kept in mind in the interpretation of the model 

effects. 

At the model optimization the variable significances are interpreted and checked for plausibility. In case 

of spurious effects the respective variables are excluded from the model. The split into a training and test 

set is not needed here, because of the bagging method of the random forest. For the predictions, all the 

pluvial floods have to be predicted. Other than that the same steps as for the logistic regression can be 

used, only the probabilities have to be predicted separately. 

 

4.3.3. Model quality assessment 

The basis for quality assessment is a confusion matrix, which shows how many data points of the test set 

are predicted correctly and incorrectly. From this matrix the following performance metrics can be 

obtained: 

 Accuracy 

The accuracy is defined as the percentage of correct predictions. It is the total number of true positive 

(flood damage cells) and true negative (no-flood damage cells) predictions divided by the number of all 

predictions (in our case the total number of cells within the study area) 

 Sensitivity 

The sensitivity is calculated by dividing the true positive predictions (in our case cells that got correctly 

predicted as flood damage cells) divided by the number of all positive predictions. 

 Specificity 

The specificity is the same as the sensitivity but with negatives. So for our case it is the number of 

correctly predicted no-flood damage cells divided by the total number of no-flood damage predictions. 

 Balanced accuracy or area under curve (AUC) 

Balanced accuracy or AUC is calculated as the sum of sensitivity and specificity divided by 2. The AUC 

refers to the area under the curve of the receiver operating characteristic (ROC), which is an easy way of 

showing how good a model performs. The benefit of using the balanced accuracy rather than the (simple) 

accuracy is that the latter is not a reliable metric for the real performance of a classifier for unbalanced 

data sets (imbalance of damaged/undamaged cells in our case). 

 False alarm rate (FAR) 

The FAR characterizes the percentage of false flood damage predictions. It is the number of false positive 

predictions divided by the total number of positive observations (flood-damage-cells). A good classified 

predictor should have a good balance between a high number of true alarms (sensitivity) and a low 

number of false alarms (FAR).  
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5. Event Analysis 

The event analysis focuses on the largest events in terms of damaged cells. The question in which year 

and in which months these events took place is answered in Figure 1. What is immediately noticeable is 

that most pluvial flood damages were reported in August (4340), with the majority having taken place in a 

single year (2623 in 2008). With 1014 reported cells less the second most severe month is June. This time 

it consists mostly of two events, one in 2009 (1083) and one in 2013 (1777). In July 2112 cells got marked 

as pluvial flood, where most cells come from an event of 2009 (1415). Other reported damages refer to 

April, May and September, therewith covering the relevant vegetation period in the agricultural sector.  

 

Figure 1: Number of reported cells per year and month 

 

For comparison, mean annual monthly precipitation of 2007 to 2013 is illustrated in Figure 2. June is the 

month, where it rained the most in our study area, followed by July and May. The years that contributed 

most to the rain in June are 2009 and 2013 with 268l/m² and 218l/m² respectively (mean value for this 

month is 159l/m²). However, especially in August 2008, where over 2000 cells were reported and marked 

as pluvial flood damages, the precipitation added up to 120l/m² only and was not exceptional (mean value 

for this month is 116l/m²). 

The highest annual precipitation can be found in the Alps with 1000-2500mm, in the lower altitudes it is 

between 700-1000mm (BMLFUW 2007). The lowest mean annual precipitation of our study area (which 

excludes most of the Alps) is in the years of 2008 (995mm) and 2011 (894mm), the highest in 2007 

(1231mm) and 2009 (1231mm). 

The highest 15 minute precipitation sum was observed in June 2011 with 69.9l/m² (Figure 3). When the 

highest intensities of each month are summed up, July is first with 345l/m², followed by June with 

315l/m² and August with 310l/m². Overall, the years of 2009 and 2010 stand out with very low rain 

intensities and 2011 with relatively high values compared to the mean monthly precipitation. The years of 

2007 and 2008 also stand out with high intensities and low sums. 
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Comparing Figures 1 and 2 shows that the reported flood damages do not directly correlate to the monthly 

mean rain sums in the respective years. There is some correlation with monthly rain intensity patterns in 

Figure 3, but again, the correlations between individual years are rather small. For a better understanding 

why pluvial flood damages occurred, the five biggest events are further analysed. 

 

Figure 2: Mean annual monthly precipitation over the 2007-2013 period 

 

Figure 3: Maximum annual 15 minute precipitation over the 2007-2013 period 
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5.1. Event of 19.08.2007 

The event of the 19th of August 2007 mostly led to reports in the districts of Linz-Land and Steyr-Land, 

more exactly south of Linz and west of Steyr (Figure 4). The rainfall of that day reached up to 60l/m², 

while most reported cells were under a direct rainfall of 30-45l/m². However, most of the rain fell with 

75-90l/m² in the centre of the district Kirchdorf at the alpine border, which did not cause any flood 

reports. 

In the time series of the centre cell of the 26x26km square (Figure 5), the rainfall on the day of the event 

reached 53l/m², which corresponds to a return period of just one year. However over half of this amount 

(28.4l/m²) fell in just 15 minutes and in the other 45 minutes of the hour only 2.6l/m² were added. The 

return periods for them are 30-75 years and 5-10 years respectively. The remaining amount of rain, which 

is 22l/m², fell during the other 23 hours of that day. Two days before there was a small raining period 

over a few hours that summed up to 7.8l/m². Even though the day before the event there has been no 

rainfall, it is not certain that the soil was very dry. The day of the event was not followed by any rain the 

day after. In the end, at the day of the event 279 cells were reported to be flooded and 7 more on the 

following day. 

 

 

Figure 4: Spatial distribution of precipitation (daily rain sum) at the 19.08.2007 
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Figure 5: Temporal development of the event of 2007: Precipitation characteristics and 

reported flooding 

 

5.2. Event of 22.08.2008 

The event of 2008 caused the most reports during the investigated time period of this study (Figure 6). 

The precipitation of this day and the resulting pluvial floods stretched from the district of Ried to Urfahr-

Umgebung. It had a smaller spatial extent compared to the one of 2007 but reached up to 90l/m² in one 

day. However there are also many reported cells where the amount of rain was lower than 30 or even 

15l/m², for example the ones in Linz-Land. 

Represented by the cell in the centre of the 26x26km window, Figure 7 shows the time series of the rain 

that caused the flood reports. With 44.5l/m² most of the rain at that day fell in a time span of 15 

minutes, which even exceeds a 100-year event. The rest of the day contributed only 15.5l/m² on top, 

which occurs every one to two years. This short and very intense rainfall was followed by 635 reports of 

floods in this 26x26km square. Before that the soil was very dry as there was almost no rainfall in the 

previous four days. It also was not followed by more rain the day after. Why there are 26 reported floods 

the day before the event remains unclear. 
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Figure 6: Spatial distribution of precipitation (daily rain sum) at the 22.08.08 

 

 

Figure 7: Temporal development of the event of 2008: Precipitation characteristics and 

reported flooding 
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5.3. Event of 07.07.2009 

The event of the 7th of July 2009, shown in Figure 8, looks similar to the one of 2007. Most of the area 

experienced a rainfall of 30-45l/m² which has caused the reports and a few cells reached to the class of 

60-75l/m² but they didn’t lead to any reports (at least not directly). This time the affected district is 

Vöcklabruck which is located at the Alpine border. 

This time, the precipitation time series does not represent the cell in the centre, but more to the south in 

the largest cluster of reported cells. Compared to the events shown before, the time series of the event of 

2009 looks rather different (Figure 9). The rain sum of the day of the event almost reaches 48l/m² and 

half of it (23.9l/m²) fell in just 15 minutes but this time the soil was already moist from the days before. 

The return periods for these are less than one year and 3-5 years respectively. Although these rainfalls 

were not as long lasting as it seems because around half of it fell in 15 minutes just like the main event, 

only in a smaller scale between 1.2 and 12.7l/m². Even concerning these rainfalls, the values for the 

return period of one year are still far higher. These increasing heavy rainfalls over five days resulted in 

304 reports of flood damaged cells. 
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Figure 8: Spatial distribution of precipitation (daily rain sum) at the 07.07.09 

 

Figure 9: Temporal development of the event of 2009: Precipitation characteristics and 

reported flooding 

 

5.4. Event of 24.08.2011 

On the 24th of August 2011 there were actually two smaller events that caused damage reports at the 

same time (Figure 10).  With only very few exceptions all the reported cells were located in the districts 

of Ried and Eferding under a rainfall of mostly 30-45l/m². These regions were already damaged at the 

event of 2008 but fortunately this time the rainfall was lower. For the time series analysis below the event 

in Ried is chosen because it covered a larger area. 

The precipitation of the event of 2011 is represented by the centre cell of the window. It was the smallest 

in the amount of rainfall, compared to the others shown, but nevertheless important as also caused 263 

reports of flood damages (Figure 11). Before the event the soil was rather dry because there was no 

rainfall the four days before. At the 24th of August the rainfall reached up to 33l/m², but this time the 

most intense 15 minute period “only” contributed 12l/m² to it. The return period for the daily sum is 

lower than one year and for the 15 minute sum one to two years. The sum of the most intense one hour 

period (16l/m²) is about half of the amount of the day, which also has a return period of less than one 

year. The other 17l/m² fell during the rest of the day. Another difference, compared to the events 

before, is that there were also flood damages reported the day after the event, when almost no rain fell. 

These could be the result of the late hours of these rains (9 p.m. and 10 p.m.), yielding that some of the 

flood damages were detected on the following day. 
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Figure 10: Spatial distribution of precipitation (daily rain sum) at the 24.08.11 

 

 

Figure 11: Temporal development of the event of 2011: Precipitation characteristics and 

reported flooding 
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5.5. Event of 02.06.2013 

The event of the 2nd of June 2013 is unique compared to the others in several ways. First of all, it was 

raining in basically all of Upper Austria (Figure 12). The amount of rain over the regions north of the Alps 

was at around 30-60l/m², the same amount that caused many reports before. This time only a few flood 

damages got reported in comparison to the size of the other events. The biggest cluster of reported cells 

is in a basin in the district of Perg close to the Danube, where the maximum rain sum was up to 75l/m². 

The Eferding basin, which lies north-west of this, was also flooded but it was marked as fluvial flood due 

to many reports of the overflowing Danube in this region. In the Alpine part of the study area the amount 

of daily precipitation was more than 100l/m². These amounts however did not cause any direct damages 

to agricultural land. 

The time series of the cell in the middle of the 2013 window looks very different compared to all the 

others before (Figure 13). There was no sudden, heavy rainfall, which caused many damaged cells. This 

was an extremely persistent rainfall that lasted up to a whole week, where over 19-56l/m² rain fell per 

day resulting in an event with a return period of 30-75 years. The highest rain intensities per hour and day 

were at around 2.5-6l/m² and the 15min intensities not even half of them (0.9-2.4l/m²), which is far less 

than a one-year event for this region. This continuous rainfall caused up to 288 reports of damaged cells 

per day, which summed up to 750 reported cells in six days resulting in the most severe event for the 

selected areas. Another interesting point is that most of the damages got reported, when the rainfall was 

declining. Some of the damages even got reported after the end of the rainfall. There are other events 

that follow a similar precipitation pattern, but they were not further analysed due to a small amount of 

pluvial flood reports. The only event that is relevant and comes close to the one of 2013 is the one of 

2009. 

 

 

Figure 12: Spatial distribution of precipitation (daily rain sum) at the 02.06.13 

 



 

 

Page 26 

 

 

Figure 13: Temporal development of the event of 2013: Precipitation characteristics and 

reported flooding 
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6. Location Analysis 

Up to this chapter the referenced event cells were based on the 100x100m grids from the original data. 

From now on, the cells of the 1x1km² presence/absence raster (PA) are used as a reference whether a cell 

was flooded or not. 

In the first part, the locations of the flooded cells of each region, which were highlighted for the time 

series, are compared to each other in terms of precipitation characteristics. After that, all cells are split 

into cells with reported pluvial flood damages and cells without reports of pluvial flood damages based on 

PA. 

 

6.1. Location analysis of flood damaged cells 

As a starting point, the spatial distributions of peak precipitation characteristics for flood damaged cells 

are assessed (Figure 14). The distributions of maximum 15 minutes rain sum (Figure 14a) differ 

substantially between the events. 2008 and 2011 have the highest values with their median at around 

15.5l/m². The next highest value is in 2009 with a median of 13.3l/m². The lowest total values have 2007 

and 2013 with a median of 11.6l/m² and 10.5l/m² respectively. The maximum rain sums of 1 hour (Figure 

14b) and 1 day (Figure 14c) show the same inter-annual patterns as the maximum 15 minutes rain sums, 

but the values are ca. 7l/m² higher for the hourly values, and ca. 40l/m² higher for the daily aggregates. 

For the latter, the lowest median is now 45.8l/m² at 2007, and the highest 57l/m² at 2008. Also 

noticeable is the low variability in the year of 2013, where the values lie between 45 and 55 l/m². 

Altogether, the variability of peak rainfall increases with the magnitude of events, as it is indicated in 

Figure 14d by the MAD of the annual maximum 15 minute sums. The lowest MAD (which is a robust 

estimate of the standard deviation) can be observed in the year of 2013 with a value of 2.7l/m² followed 

by 2007 with 3.8l/m² and 2009 with 4.3l/m². The highest values can be found again in the years of 2008 

and 2011 with 6.4 and 6.1l/m². 

Figures 14d - 14f show the number of locations where peak rainfall exceeded some threshold level. The 

threshold of 20l/m² in 15 minutes was exceeded in the years 2008 and 2011 up to eight times, while their 

median is two. The next most frequent rain intensities over 20l/m² are found in 2009 with up to five and a 

median of one. 2007 and 2013 look quite similar but 2007 exceeds the threshold up to three times but its 

median is at zero. 2013 on the other hand exceeds it 0-2 times with its median being one. Not surprisingly 

the plots don’t change dramatically for the 30l/m² threshold. 2008 and 2011 are at maximum exceedances 

of two and a median of one, while the next highest is 2009 with up to three and a median of zero. The 

remaining two years also have a median of zero but some event of 2013 crossed the 30l/m² mark at least 

once, which is quite surprising as its mean 15 minute sums are even lower than 20l/m². These high 

intensity rainfalls in this region might be uncommon compared to the others and may not necessarily lead 

to pluvial flood damages. 

It is now interesting to analyse the locations of reported cells in terms of topographic factors. The 

reported cells are located in an altitude of 226 to 696 meters above sea level (Figure 15). The damaged 

cells of the event of 2009 are located highest when we chose the median (bold black line in the box) as 

reference which is not a surprise as it is the most southern of the event windows. The median in a boxplot 

shows the values that separates the upper and lower half of the values. For 2009 it lies at 490 meters 

followed by 2008 and 2011 at around 460 meters. The lowest reported cells were caused by the event of 

2007 and 2013 at around 340 meters. The location of the event of 2013 stands out again as it contains the 

highest and lowest values compared to the others. Nevertheless half of them are between 226 and 336 

meters and the other half between 336 and 696 meters. 

The box plots of the slopes in Figure 16 show a completely different picture, since most values of 0 to 15 

% are quite low, but nevertheless many outliers reach up to 67 %. The medians of all selected years are 

between 4 and 9 %. 2013 looks different compared to the others because the values of the upper half are 
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more spread and have no outliers. The year with the overall lowest average slopes is 2007 with the lowest 

median and outliers. 

The erosion in Figure 17 shows bigger differences among the years. Basically they can be separated into 

two groups: 2007, 2008 and 2011 which cover a great range of 0 to over 8 or 10.000 kg/ha and 2009 and 

2013 which have very low values but many outliers. It is not surprising that 2008 and 2011 are very similar 

to each other as they even partly overlap but 2007 is located in the east at lower altitudes and slopes. The 

biggest difference between 2007 and the other two is the upper limit which lies about 2.000 kg/ha lower. 

The locations of 2009 and 2013 didn’t seem to be very similar until now. 

 

 

 

 

 

(a) 

 

(b) 

(c) 



 

 

Page 29 

 

 

 

 

Figure 14: (a) Boxplots of mean maximum 15min rain sum (mm), (b) mean maximum 1 

hour rain sum (mm), (c) mean maximum 1 day rain sum (mm), (d) MAD of annual 

maximum 15 min rain sum (mm), (e) number of cells with 15 min rain sums over 20 l/m², 

and (f) number of cells with 15 min rain sums over 30 l/m² 

 

(d) 

(f) 

(e) 
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Figure 15: Boxplots of altitude of reported cells 

 

 

Figure 16: Boxplots of slope of reported cells 

 

 

Figure 17: Boxplots of erosion of reported cells 

 

Similar to the erosion box plots, land use can be used to divide the event years into a group of 2007, 2008 

and 2011 and one with 2009 and 2013. Over 80% of the cells of the first group have arable land as their 

main land cover (Table 2). 2007 has 7% more but no grassland, less than 1% heterogeneous agricultural 

land and 6.67% forest while the other two have around 6, 8 and 2% respectively. The second group only 

has around 50% of arable land but much more forest, grassland and/or heterogeneous agricultural land. All 

years have the low values of sealed land and the missing categories of wetland and water in common. 
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The table of the soil textures draws a very similar picture to the one of the land use (Table 3). The 

locations of the events of 2009 and 2013 have a very high percentage of sand (59.83 and 41.23%) and a 

very low one of silt (33.33 and 36.84%) compared to the others. The location of 2007 has the highest 

relative amount of silt with 86.67%, the rest is almost exclusively loam and less than 1% is sand. 2008 and 

2011 have the highest percentages of loam with 35.68% and 39.00%. Similarities between all years are the 

missing clay and the almost missing category of others. 

Table 2: Relative percentages of land use per year of event analysis 

 Sealed Forest Wetland Water Arable land Grassland Het.agr.land 

2007 5.00 6.67 0.00 0.00 87.50 0.00 0.83 

2008 3.24 2.16 0.00 0.00 80.54 5.95 8.11 

2009 5.98 15.38 0.00 0.00 55.56 13.68 9.40 

2011 3.50 2.00 0.00 0.00 80.00 6.50 8.00 

2013 0.88 21.05 0.00 0.00 48.25 1.75 28.07 

 

Table 3: Relative percentages of soil texture per year of event analysis 

 Loam Sand Clay Silt Others 

2007 12.50 0.83 0.00 86.67 0.00 

2008 35.68 4.87 0.00 59.46 0.00 

2009 4.27 59.83 0.00 33.33 2.56 

2011 39.00 4.50 0.00 56.00 0.50 

2013 18.42 41.23 0.00 36.84 3.51 

 

The soil types are summarized in Table 4. The location of 2007 consists of almost one half of brown soil 

and the other half of pseudogley with small percentages of gley and alluvial soil. The areas of 2008 and 

2011 have with 60% and 56% more brown soil but with 30% less pseudogley and almost no alluvial soil. 2009 

has the highest percentage of brown soil with 79%, the other ~20% are split between pseudogley (10%), 

alluvial soil (5%) and gley (5%). 2013 stands out with the highest amount of alluvial  soil and gley with 16% 

and 7% but the lowest of pseudogley with 7% and the other two third of the area consists of brown soil. 

Relict soil, soil form complex, rendzina and rangier and others were not represented in the event windows 

and only a minimal percentage of bog and atypical soil. 

Across each year the soil permeability of the damaged cells was mostly medium. The only exception was 

the year of 2013 where it was higher. In case of the soil depth there is not much to learn apart from the 

fact that the reported cells had almost exclusively a high depth. The soil water conditions follow a similar 

pattern to the permeability and depth. Most cells are located at the centre values of the (alternating) 

water conditions. The only noticeable differences are the years 2007, which had a significantly greater 

amount of alternating soil with more wet phases, and 2013, which shows a good portion of its cells at drier 

conditions (Figure 18). 

 



 

 

Page 32 

 

Table 4: Relative percentages of soil type per year of event analysis 

 Relict 

soil 

Alluvial 

soil 

Gley Atypical 

soil 

Brown 

soil 

Pseudogley Soil 

form 

complex 

Rendzina 

and 

rangier 

Bog Others 

2007 0.00 2.50 4.17 0.00 49.17 44.17 0.00 0.00 0.00 0.00 

2008 0.00 0.54 5.95 3.78 60.54 29.19 0.00 0.00 0.00 0.00 

2009 0.00 5.13 5.98 0.00 78.63 10.26 0.00 0.00 0.00 0.00 

2011 0.00 0.50 6.00 8.50 56.50 28.00 0.00 0.00 0.50 0.00 

2013 0.00 15.79 7.02 0.88 67.54 7.02 0.00 0.00 1.75 0.00 

 

 

 

Figure 18: Soil permeability (a), depth (b) and water conditions (c) of reported cells of event 

analysis in percent 

 

(a) 

(c) 

(b) 
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6.2. Location analysis of the study area 

The number of 1x1km cells with reported pluvial flood damages in the time period of 2007 to 2013 is 1293 

against 8297 cells without such reports. The resulting presence/absence raster for our study area can be 

seen in Figure 19. 

 

 

Figure 19: Observed pattern of flood reports in Upper Austria for the 2007 to 2013 period. 

Grid cells with reported floods are marked in blue, grey: no report, white: excluded areas. 

 

The precipitation characteristics of the study area and of event vs. no event cells are displayed in Figures 

20 – 26. The boxplots point out whether there is a general difference in the considered rainfall 

characteristic between cells, where no reports were sent (0) and cells where reports were sent (1), the 

right plot shows how these values are distributed over the study area and on the bottom the relationship 

between the values and pluvial flood damages is illustrated. 

The boxes of the mean maximum 15 minute rain sums (Figure 20) look almost exactly the same with their 

medians at 12.4l/m² and 12.7l/m², which means that with respect to flood vulnerability, there is no trend 

visible. The kernel smoother shows a different picture. Actually there seems to be a positive linear 

relationship between higher 15 minute sums and pluvial flood damages. Most of the highest intensities are 

located in the south right in front of the Alps and in the region of the events of 2008 and 2011. Not 

surprisingly the mean maximum 1 hour rain sum looks very similar (Figure 22). Their medians are at 

19.26l/m² and 19.31l/m² but the trend line again shows a mostly positive linear relationship between 

higher 1 hour sums and pluvial flood damages. In the study area the higher sums are located in the regions 

of the events of 2008 and 2011 and on the border of the Alps. The mean maximum 1 day sums (Figure 23) 

also have very similar medians at 51.2l/m² and 49.9l/m² but the variance of the values for the flooded 

cells is in comparison rather low. This apparently leads to a non-linear relationship between the values 

and pluvial flood risk. In the whole study area the highest values are now all located in the Alpine regions 

in the south at up to 90l/m². The median absolute deviations (Figure 21) are very similar for flood and no-
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flood cells, with their respective medians  at 3.8l/m² and 4l/m². The highest values are in cells without 

pluvial flood damage reports, which leads to a sudden drop of the trend line after a positive relationship 

between pluvial flood damages and higher absolute deviations. On the map of the study area, most of the 

higher values are in regions that were flood damaged by the events of 2008 and 2011, but there are also a 

few cells with even higher values in regions that were not flood damaged. 

A very similar problem can be seen at the number of 15 minute rain sums that exceeded 20l/m² (Figure 

24). The medians for both boxes are one, but most of the flood damaged cells experienced more heavy 

rainfall than the not flood damaged ones. However, due to some cells in the west that reached the value 

of 10 and were not reported as pluvial flood damage, the kernel smoother suddenly sinks after a mostly 

positive linear relationship. The exceedances of 30l/m² (Figure 25) do not suffer from the same problem. 

The median for both boxes is at zero but the kernel smoother shows a positive linear relationship between 

pluvial flood damages and the number of 15 minute rain sums over 30l/m². 

 

 

Figure 20: Mean maximum 15min rain sum (Max_rain_15 in mm). The upper panels show 

the areal distribution over Upper Austria (right) and empirical distributions of event vs. no-

event cells (left). The lower panel plots flood damage vs. the number of events together with 

a locally weighted regression smoother. 
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Figure 21: Mean absolute deviation (MAD) of annual Max_rain_15 in mm. The upper 

panels show the areal distribution over Upper Austria (right) and empirical distributions of 

event vs. no-event cells (left). The lower panel plots flood damage vs. the number of events 

together with a locally weighted regression smoother. 

 

Figure 22: Mean maximum 1hour rain sum (Max_rain_h) in mm. The upper panels show 

the areal distribution over Upper Austria (right) and empirical distributions of event vs. no-

event cells (left). The lower panel plots flood damage vs. the number of events together with 

a locally weighted regression smoother. 
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Figure 23: Mean maximum 1day rain sum (Max_rain_d) in mm. The upper panels show the 

areal distribution over Upper Austria (right) and empirical distributions of event vs. no-

event cells (left). The lower panel plots flood damage vs. the number of events together with 

a locally weighted regression smoother. 

 

 

Figure 24: Number of events with 15min rain sum > 20mm. The upper panels show the 

areal distribution over Upper Austria (right) and empirical distributions of event vs. no-

event cells (left). The lower panel plots flood damage vs. the number of events together with 

a locally weighted regression smoother. 
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Figure 25: Number of events with 15min rain sum > 30mm. The upper panels show the 

areal distribution over Upper Austria (right) and empirical distributions of event vs. no-

event cells (left). The lower panel plots flood damage vs. the number of events together with 

a locally weighted regression smoother. 

 

In Figures 26 - 29 we can see that in general, cells with low heights and slopes look as if they are more 

likely to be flood damaged, while cells with high erosion may also be more susceptible. The relationships 

between altitude and slope to pluvial floods are mostly linear and negative, but erosion shows a nonlinear 

relationship. Looking at the graphs of the whole study area, it can be seen that at low altitudes the slopes 

are lower and the erosion higher, indicating high correlations between them. 
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Figure 26: Altitude (in m.a.s.l.). The upper panels show the areal distribution over Upper 

Austria (right) and empirical distributions of event vs. no-event cells (left). The lower panel 

plots flood damage vs. the number of events together with a locally weighted regression 

smoother. 

 

Figure 27: Slope (in %). The upper panels show the areal distribution over Upper Austria 

(right) and empirical distributions of event vs. no-event cells (left). The lower panel plots 

flood damage vs. the number of events together with a locally weighted regression smoother. 
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Figure 28: Erosion (in kg/ha). The upper panels show the areal distribution over Upper 

Austria (right) and empirical distributions of event vs. no-event cells (left). The lower panel 

plots flood damage vs. the number of events together with a locally weighted regression 

smoother. 

 

In Figure 29 we see the land use of Upper Austria. In regions with lower altitudes most of the cells are 

arable land. The Bohemian Mass is characterized by the highest amount of heterogeneous agricultural 

land, especially in the eastern parts. With rising altitudes in the south the amount of grassland increases. 

Grasslands are mostly located in basins and areas with lower slopes (compared with the rest of the Alps). 

The regions with higher altitudes are characterized by high slopes, and thy are mainly used as forest. Cells 

with water and wetland as their biggest part are located around lakes or big rivers like the Danube, while 

sealed cells can be found around bigger cities. The whole study area consists mainly of agricultural land 

(37.22% arable land, 12.93% grassland and 11.78% heterogeneous agricultural land) and forest (31.71%), 

which can be seen in Table 5. When the area is separated by cells with and without reports, it becomes 

clear that most of the flood damaged cells were arable land (58.31%), which was expected because the 

reports refer to damages on agricultural land. Only 13.30% of the cells with reports were flood damaged 

agricultural land next to a forest. 

Almost all of the Bohemian Mass has sand as the main soil texture (Figure 30). In the flatter regions it is 

mostly silt and at steeper slopes it is more loam. Only in the west of the Alps in Upper Austria there is clay 

as the main soil texture, which only covers 1.63% of the study area (Table 6). Out of the four different soil 

textures sand and silt are the most frequent in Upper Austria (41.29% and 37.38%) but half of the cells 

with reports were located on silt and one third on sand. 

Three quarters of Upper Austria are covered by brown soil, irrespective of special regional characteristics 

(Figure 31). 10.21% are covered by pseudogley, which is located in lower regions and at the edge of the 

Alps (Table 7). The remaining 15% are covered by the other main soil types, the most noticeable being 

alluvial soil around rivers and basins. Out of all the soil types only pseudogley shows a bigger difference 

between cells with and without reports. 



 

 

Page 40 

 

 

Figure 29: Plot of land use over Upper Austria 

Table 5: Percentage shares of land use 

 Sealed Forest Wetland Water Arable land Grassland Het.agr.land 

All 5.56 31.71 0.03 0.76 37.22 12.93 11.78 

No report 5.9 34.58 0.02 0.87 33.93 13.08 11.62 

Report 3.40 13.30 0.08 0.08 58.31 11.99 12.84 

 

Figure 30: Plot of soil texture over Upper Austria 

Table 6: Percentage shares of soil texture 

 Loam Sand Clay Silt Others 

All 17.86 41.29 1.63 37.38 1.85 

No report 18.22 42.66 1.81 35.42 1.88 

Report 15.55 32.48 0.46 49.88 1.62 
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Figure 31: Plot of soil type over Upper Austria 

Table 7: Percentage shares of soil type 

 Relict 

soil 

Alluvial 

soil 

Gley Atypical 

soil 

Brown 

soil 

Pseudogley Soil 

form 

complex 

Rendzina 

and 

rangier 

Bog Others 

All 2.10 4.45 4.32 1.46 74.55 10.21 1.40 1.03 0.42 0.06 

No 

report 

2.36 4.45 4.27 1.27 74.98 9.51 1.53 1.18 0.37 0.07 

Report 0.39 4.41 4.64 2.71 71.85 14.69 0.54 0.08 0.70 0.00 

 

The soil permeability is typically greater in the Bohemian Mass and around rivers (Figure 32). With 

lowering altitude the permeability decreases too. Figure 33 shows a general trend of a higher vulnerability 

of soils with a low permeability. 

The soil depth is in contrast to the permeability large at lower altitudes and more shallow at higher 

altitudes and around rivers (Figure 34). Figure 35 shows a higher vulnerability of soil with a high depth. 

However, as most of Upper Austria is characterized by soil with a high depth. it is questionable, if soil 

depth is an adequate indicator for a higher flood risk. 

Low water conditions of the soils are typically located at hills and low mountain ranges higher altitudes 

with high slopes (Figure 36). Ravines and basins in these areas exhibit wet or medium water conditions. 

Medium water conditions are also typical for the regions in the centre and the west of the study area. The 

alternating soils are mixed in between the medium water conditions but rarely reach higher altitudes. The 

alternating soils with more dry phases are located around rivers, while the ones with more wet phases are 

rather in the east, west or south. Figure 37 shows a general trend towards more floods in wet soils, which 

applies to the alternating and the more consistent types. The decline of the PA in the wet conditions is 

actually related to a single class and is therefore not considered a downward trend. 
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Figure 32: Plot of soil permeability over Upper Austria 

 

Figure 33: Soil permeability and reports with kernel smoother 

 

Figure 34: Plot of soil depth over Upper Austria 
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Figure 35: Soil depth and reports with kernel smoother 

 

Figure 36: Plot of soil water conditions over Upper Austria 

 

Figure 37: Water condition and reports with kernel smoother 

 

6.3. Summary 

 Mean maximum 15 minute rain sums 

The mean maximum 15 minute rain sums doesn’t show a clear separation between report and no report 

cells. Even the medians of the extracted event cells differ between 10.5l/m² and 15.8l/m² when the 

boxplot of the whole study area shows them at around 12.4-12.7l/m². 
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 Mean maximum 1 hour rain sum 

The 1 hour rain sums don’t differ much from the 15 minute sums. Their medians are around 7l/m² higher, 

but otherwise they are very similar. 

 Mean maximum 1 day sums 

Even for the 1 day sums the relationships between the medians didn’t change. For the extracted event 

cells, the medians range between 45.8l/m² and 57l/m², while for the study area they are at 51.2l/m² and 

49.9l/m². Due to the non-linearity shown by the kernel smoother, this variable will not be used in the 

logistic regression. 

 Median absolute deviation of the 15 minute rain sums 

The median absolute deviation behaves like the other rain variables, only with much smaller values. The 

range of the medians from the boxplots from the extracted cells is 2.7l/m² and 6.4l/m². On the whole 

study area they are again very close together at 2.8l/m² and 4l/m². 

 Number of 15 minute rain sums that exceeded 20l/m² and 30l/m² 

As the numbers of exceedances of 20l/m² and 30l/m² are very low, their medians range only between 

zero and two. However, the maximum number for the extracted cells is eight for the 20l/m² threshold and 

three for the 30l/m². On the whole study area, there are a few cells, where the 20l/m² mark was 

exceeded ten times and four times at the 30l/m² mark. Differences in the medians between reported and 

not-reported cells are not present. 

 Altitude 

At the reported cells of the event windows the median of the altitudes was located between 336 and 490 

meters. On the scale of the whole study area they were around 497 for the unreported cells and 439 for 

the reported ones. While the event of 2009 was located at a higher altitude, the other event years were 

at the level of the events of the whole area or lower. 

 Slope 

The median of the slopes for each major event is between 4.5 and 9 % while the medians for the whole 

study area are at 7.5 % for reported cells and 11 % for unreported. Most of the cells of the event years fit 

well around the 7.5 % of all reported cells. Only the event of 2013 is higher at 9 % but still closer to the 

reported cells than the unreported. Overall a flatter ground might indicate a higher pluvial flood risk. 

 Erosion 

The erosion separated the events into two groups: median above 3000kg/ha and median below 1000kg/ha. 

While the Figures for the entire study area give a clear indication that higher erosion increases the pluvial 

flood risk, the damage events of 2009 and 2013 happened in regions, where erosion was at a much lower 

level. Even the kernel smoother doesn’t show a clear linear relationship between flood damaged and non-

flood damaged cells, which means that the erosion will not be integrated in the logistic regression. 

 Land use 

First of all the land use data shows that most of the reported cells cover agricultural land (58.31%, 11.99% 

and 12.84%) and only a few were next to forests (13.30%). The cells without a report are more separated 

with around 1/3 of forest, 1/3 of arable land and 1/4 of grassland and heterogeneous agricultural land. 

With more than 80% the years of 2007, 2008 and 2011 lean heavily toward arable land and far less to the 

other categories. The years of 2009 and 2013 on the other hand contained a greater mixture of categories. 

Only about half of the cells damaged by these floods were arable land but the proportion of grassland or 

heterogeneous agricultural land was higher. Additionally the percentage of forest (15.38% and 21.05%) was 

higher compared to the other years and the whole study area. Due to the low percentages the classes of 

sealed, wetland and water will be added to the category of others in the models of aggregated classes. 
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 Soil texture 

Flood damage cells are reported in areas with a higher proportion of sand (42.64% vs 32.48%) and a lower 

proportion of silt (35.42% vs. 49.88%), as compared to cells without flood observation. However, these 

proportions differ substantially between the events. The event of 2007 occurred on soil with a high 

amount of silt (59.46%) and some loam (12.50%). The soils of the events of 2008 and 2011 had around 30% 

less silt but with 35.68% and 39.00% far more loam and around 5% sand. Sand poses the main soil texture 

at the events of 2009 and 2013 with 59.83% and 41.23%, with about 1/3 silt and the rest is mostly loam. A 

synoptic view of Figure 29 and 30 suggests that soil texture is highly correlated with land use in the study 

area. This suggests that soil texture characteristics of cells with and without a report are likely influenced 

by the nature of the target variable (reported agricultural damage) and cannot be seen as an independent 

indicator of pluvial floods in the study area. In the models of aggregated classes the class of clay will be 

combined to the class of others due to the very low percentages. 

 Soil type 

Out of the ten different soil type classes only three look particularly interesting: alluvial soil, brown soil 

and pseudogley. While the alluvial soil is only a small factor for most event years, it represented 15.79% of 

soil types in the 2013 event, which is not surprising as this type is normally located near rivers and 

catchment areas. The brown soil of the event years vary between 48.33% and 78.63%. On the whole study 

area brown soil covers 3/4 of the area. So on the event level it could be an indicator for pluvial flood 

damages, however, it shows only a small difference of 2.65%. The most interesting type is pseudogley 

because on the whole area the cells without reports have 9.74% pseudogley but the event years reach up 

to 44.17% resulting in an overall difference of 4.88%. Based on the overall differences the only class that 

will remain besides “Others” will be pseudogley in the model of aggregated classes. 

 Soil permeability 

The soil permeability is usually higher in the Bohemian Mass and around rivers. For this reason, the event 

of 2013 had a higher percentage of damaged cells at a higher permeability. The events in the other years 

affected areas with medium permeability, which represents the most beneficial permeability for 

agriculture. Nevertheless the overall trend of a higher risk goes into the direction of lower soil 

permeability. 

 Soil depth 

Looking at the soil depth, the expectation of it being an influential factor to pluvial floods is quite low. 

The largest part of the study area is covered with a high soil depth, only areas at higher altitudes and 

around rivers have a lower depth. Even the event of 2013, which is located next to a river, shows a small 

percentage of a lower soil depth. At the separation of the presence/absence cells the trend indicates an 

increasing risk with increasing depth, which might be correlated rather with the altitude than with the 

actual soil depth. 

 Water conditions 

The soil water conditions are usually drier in higher regions and around rivers. The dry soil next to water 

might be influenced by the lower soil depth and higher soil permeability. Similar to the soil permeability 

the reported cells from the event years are mostly located at medium water conditions (also alternating 

conditions without majority of wet or dry phases), the best condition for agriculture. The biggest 

exceptions are the event of 2013, which is drier, and 2007, which is also located at alternating soils with 

more wet phases. The overall trend points to a higher risk with increasing wetness, also for the alternating 

soils. However, water conditions have a similar problem to soil depth in terms of similarities with the 

altitude. For the modelling with aggregated classes the water conditions will be reduced to four: dry, 

medium, wet and others and furthermore tested as a continuous and a factor variable. For a list of factor 

levels of the aggregated classes see Table 10.  
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7. Modelling 

In this chapter, the two data sets will be modelled with a logistic regression and random forests. The data 

set and resulting model with the original classes will also be referred to as “first”, while the data and 

model with the aggregated classes will also be referred to as “second”. 

 

7.1. Logistic regression 

For the logistic regression it is important to know, which variables correlate with each other and how 

important they are on their own. To better illustrate these correlations, a heat map is used, which shows 

negative (green), neutral (yellow) and positive (red) correlations. Finally, they group samples together 

using dendrograms, or tree diagrams, where the most similar variables are split at the bottom. Out of 

highly correlated variable groups only one will be chosen for the model. Additionally, variables that don’t 

show significances in the single models are also excluded in further modelling. Then, for each single model 

the pseudo R² is calculated and compared to the others. It is used to determine, which variable out of a 

highly correlating group will be chosen. As explained in chapter 4.3, two data sets are compared with 

each other: one with the original data and one with aggregated classes, which are determined in chapter 

6.3. These aggregated variables are analysed in the same way as the others before. 

In the next step, a regression model for each data set with all predictors selected in the previous step is 

analysed. The interpretation for it is different to the usual regression. The estimated coefficients show 

the increase or decrease (depending on the sign) of the log odds for pluvial flood damages. In the next 

column the standard error is shown and next to it the z-statistics, which is calculated by dividing the 

estimate by the standard error. Corresponding to the z-statistics is the p-value, where a small value 

indicates a high significance. Variables that are not significant (p-value over 0.1) or have a sign that 

cannot be explained by the previous analyses will be excluded. At a last step the models are checked for 

multicollinearity using the generalized variation inflation factor (GVIF), where variables with a value over 

10 have to be excluded. At the end, the two final models are interpreted and compared. Additionally, a 

forward stepwise regression is carried out to see, if it would choose variables differently. 

These two models are split into training and test set in a ratio 80:20. First, the model is fitted using the 

training data and then used to predict the test set. The true and false predictions are taken from a 

confusion matrix and illustrated in a Table for three cut-offs. Finally, the probabilities are plotted over 

the whole study area to determine, where high risk areas are located. 

 

7.1.1. Single models and correlations 

This chapter provides information on how good each variable can explain pluvial floods individually and 

independent from other variables (Tables 8 and 9). Furthermore, the correlations between the variables 

are assessed and illustrated (Figure 38). 

The mean maximum 15 minute rain sum shows a very high significance with a positive estimate, which 

indicates a rising pluvial flood risk with increasing rain intensity. It highly correlates with the mean 

maximum 1 hour sum (0.827) and the number of >20l/m² intensities (0.742). On the other hand the mean 

maximum 1 hour rain sum does not show any significance to the pluvial flood risk. As a result, it will not 

be used for further modelling, which is beneficial regarding the high correlation. The mean absolute 

deviation of the 15-minute sum is less significant than Max_rain_15, but still very significant with a 

positive estimate. It correlates mostly with the variables Max_rain_15 (0.512), Max_rain_h (0.395) and 

Rain_20 (0.456). Rain_20 has the highest significance and a positive estimate, indicating a higher risk of 

pluvial flooding with more rain intensities above 20l/m². As noted above it highly correlates with the 

Max_rain_15, Max_rain_mad and also Max_rain_h (0.582). Rain_30 also has the highest significance and a 

positive estimate and correlates the most positive with Rain_20 (0.448) and Max_rain_15 (0.474). 
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The altitude has a negative estimate and is very significant indicating a higher pluvial flood risk at lower 

altitudes. It positively correlates mostly with the slope (0.462). As this positive correlation shows, the 

slope is also very significant and has a negative estimate, indicating a higher risk in lower slopes. 

The interpretation for factor variables is a little different. Here, the intercept is the sealed land and 

serves as the reference to the other classes. So, the estimate of forest is 0.38 lower than the estimate of 

the intercept and arable land is 1.11 higher. Consequently, the most significant land use class is the 

arable land followed by heterogeneous agricultural land. The classes of sealed and wetland are also 

significant but are too few to be significant for our study. Water is not significant and almost non-existent, 

while grassland is also very significant. From the most represented classes, forest indicates a decreasing 

pluvial flood risk, while each agricultural class increases the risk. However, it should be noted that our 

flood damage data originate from flood damaged agricultural areas. The most significant soil texture is 

silt, which indicates an increasing flood risk. However, as explained in the location analysis it is the 

typical texture for agricultural land. Clay is also very significant, but only present in a few cells. Loam and 

sand are slightly significant and indicate a decreasing pluvial flood risk, while others are not significant. 

With the exception of rendzina and rangier and others, every type of soil has a very high significance. 

They also increase the risk of flooding, except for relict soil and soil formation complexes. Nonetheless, 

the largest part of the study area is covered with brown soil and only pseudogley covers also more than 

10%. The single model with the soil permeability indicates a decreasing pluvial flood risk with increasing 

soil permeability, which shows a very high significance. Its highest correlations are with the soil depth (-

0.496) and erosion (-0.442) but agricultural land is more likely to be on soils with a lower permeability. 

The soil depth is also very important and indicates an increase in the flood risk, but is also increasingly 

located on cells with agricultural land. Beside its negative correlation with permeability, it correlates 

positively with erosion (0.402). Most soil water condition classes are highly significant, with overall wet 

soils indicating an increased risk. There are two classes between medium and wet, which alone would 

indicate a decrease in risk, but they are too few and are probably coincidentally located at cells that were 

not flood damaged. At the alternating soils only the ones with more dry phases indicate a decrease in 

flood risk. Nonetheless, many dry soils are located in the Bohemian Mass, where there is less agriculture 

and alternating soils with more dry phases are fewer compared to the other two alternating classes. 

Over all pseudo R², the highest value is achieved by the land use, followed by altitude (Table 9). The rain 

variables do not perform very well, Max_rain_h, which was not significant, has basically a pseudo R² of 0. 

The other soil variables are at a value of 0.02 at the McFadden R² and 0.05 to 0.07 at Nagelkerke’s. 

Out of the first three correlating variables of Max_rain_15, Max_rain_h and Rain_20, Max_rain_h will not 

be included due to non-significance and Max_rain_15 has a lower pseudo R² (0.003) than Rain_20 (0.008), 

which means that Rain_20 will be chosen for modelling. Between Max_rain_15_mad and Rain_30, Rain_30 

has a higher pseudo R² (0.006 vs. 0.002) and will therefore be chosen. The altitude and slope are also 

highly correlating and the former has a higher R², but the slope will be integrated into the model 

nonetheless because of its comparatively high R²-value. The final pair is permeability and depth, where 

depth has a higher pseudo R² at 0.025 than permeability at 0.014. 

Table 8: Summary of single models for the first model 

Variables/Classes Estimate Std. Error z value Pr(>|z|) 

Max_rain_15 0.046891    0.006381    7.348 2.01e-13 *** 

Max_rain_h -0.0009745 0.0046823 -0.208 0.835 

Max_rain_15_mad 0.04742 0.01401 3.386 0.00071 *** 

Rain_20 0.18409 0.01558 11.815 < 2e-16 *** 

Rain_30 0.38593 0.03824 10.094 < 2e-16 *** 

Altitude -0.0033343 0.0001274 -26.18 < 2e-16 *** 
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Slope -0.02893 0.00133 -21.75 < 2e-16 *** 

Land use     

Sealed -0.48268 0.08124 -5.941 2.83e-09 *** 

Forest -0.38308 0.08984 -4.264 2.01e-05 *** 

Wetland 1.73544 0.80589 2.153 0.0313 * 

Water -14.08339 108.65823 -0.130 0.8969 

Arable land 1.11494 0.08534 13.064 < 2e-16 *** 

Grassland 0.48381 0.09418 5.137 2.79e-07 *** 

Het.agr.land 0.69935 0.09501 7.361 1.83e-13 *** 

Soil texture     

Loam -0.10324 0.04187 -2.466 0.0137 * 

Sand -0.09198 0.05037 -1.826 0.0678 . 

Clay -1.68055 0.23952 -7.016 2.28e-12 *** 

Silt 0.55375 0.04949 11.189   < 2e-16 *** 

Others 0.11121 0.13300 0.836 0.4031 

Soil type     

Relict soil -1.9794 0.2328 -8.502 < 2e-16 *** 

Alluvial soil 1.9921 0.2461 8.093 5.81e-16 *** 

Gley 2.0640 0.2469 8.358 < 2e-16 *** 

Atypical soil 2.6725 0.2659 10.052 < 2e-16 *** 

Brown soil 2.0259 0.2336 8.671 < 2e-16 *** 

Pseudogley 2.5810 0.2382 10.834 < 2e-16 *** 

Soil form complex 1.0631 0.2959 3.593 0.000327 *** 

Rendzina and rangier -0.4055 0.4585 -0.884 0.376508 

Bog 2.6374 0.3264 8.080 6.46e-16 *** 

Others -9.5867 88.0869 -0.109 0.913336 

Permeab. -0.16533 0.01019 -16.23 < 2e-16 *** 

Depth 0.39256 0.01856 21.15 < 2e-16 *** 

Water conditions     

Alternating dry -2.1316 0.2827 -7.541 4.66e-14 *** 

Alternating 2.5893 0.2859 9.055 < 2e-16 *** 

Alternating wet 2.5982 0.2906 8.942 < 2e-16 *** 

Very dry -11.4344 99.4238 -0.115 0.908439 

Very dry to dry 1.3695 0.4297 3.187 0.001438 ** 

Dry 1.6712 0.2874 5.814 6.08e-09 *** 
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Dry to moderately dry 1.7750 0.4487 3.956 7.63e-05 *** 

Moderately dry 1.9006 0.2858 6.650 2.93e-11 *** 

Moderately dry to medium 2.1680 0.3410 6.358 2.05e-10 *** 

Medium 2.3715 0.2840 8.349 < 2e-16 *** 

Medium to moderately wet 1.7918 0.3474 5.158 2.49e-07 *** 

Moderately wet 2.4193 0.2970 8.145 3.81e-16 *** 

Moderately wet to wet 2.2858 0.6240 3.663 0.000249 *** 

Wet 1.9001 0.2957 6.426 1.31e-10 *** 

Wet to very wet 2.9789 0.7457 3.995 6.48e-05 *** 

Very wet 2.8919 0.3474 8.325 < 2e-16 *** 

Others -11.4344 535.4112 -0.021 0.982961 

                       

Table 9: Pseudo R² of the single models for the first model 

Variables McFadden Cox and Snell Nagelkerke 

Max_rain_15 0.003 0.007 0.007 

Max_rain_h <0.001 <0.001 <0.001 

Max_rain_15_mad 0.002 0.001 0.003 

Rain_20 0.008 0.019 0.020 

Rain_30 0.006 0.014 0.015 

Altitude 0.039 0.094 0.102 

Slope 0.029 0.069 0.075 

Land.use 0.067 0.156 0.169 

Soil.text 0.021 0.052 0.057 

Soil.type 0.020 0.048 0.053 

Permeab. 0.014 0.035 0.038 

Depth 0.025 0.062 0.067 

Water.con 0.026 0.063 0.069 

 

The land use classes are very significant, with forest decreasing the flood risk and agricultural land 

increasing it (Table 10). Moving the class of clay to others changed almost nothing for the other soil 

textures. Pseudogley as only remaining soil type is still very significant, but has a lower estimate. However 

it still indicates an increase in pluvial flood risk. The class of others, which is now the intercept and 

consists mostly of brown soil, is not significant. The soil water conditions both show an increasing flood 

risk on wet soils and they are very significant. Concerning the factors there is a big increase in risk from 

dry to medium soils but between medium and wet soil there is not much of a difference. As a continuous 

variable it shows a high negative correlation with permeability (-0.571) and a positive one with depth 

(0.607). 
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The pseudo R² values of land use and soil texture have not changed much from the aggregation (Table 11). 

The soil type lost considerably over all R² measures. The water conditions reach better values when used 

as a factor, but by aggregation their pseudo- R² is halved. 

Table 10: Summary of single models for the second model 

Variables/Classes Estimate Std. Error z value Pr(>|z|) 

Land use     

Forest -0.86576 0.03835 -22.575 < 2e-16 *** 

Arable land 1.49802 0.04641 32.281 < 2e-16 *** 

Grassland 0.86689 0.06115 14.176 < 2e-16 *** 

Het.agr.land 1.08243 0.06243 17.339 < 2e-16 *** 

Others 0.25315 0.08712 2.906 0.00366 ** 

Soil texture     

Loam -0.10324 0.04187 -2.466 0.013670 * 

Sand -0.09198 0.05037 -1.826 0.067840 . 

Silt 0.55375 0.04949 11.189 < 2e-16 *** 

Others -0.42779 0.11205 -3.818 0.000135 *** 

Soil type     

Others 0.01908 0.01814 1.052 0.293 

Pseudogley 0.58255 0.05370 10.849 < 2e-16 *** 

Water.con 0.42485 0.03508 12.11 < 2e-16 *** 

Water conditions     

Dry -0.58069 0.04921 -11.800 < 2e-16 *** 

Medium 0.75804 0.05298 14.309 < 2e-16 *** 

Wet 0.82821 0.07034 11.775 < 2e-16 *** 

Others -9.98534 119.46805 -0.084 0.933 

 

Table 11: Pseudo R² of the single models for the second model 

Variables McFadden Cox and Snell Nagelkerke 

Land.use 0.064 0.148 0.161 

Soil.text 0.018 0.045 0.049 

Soil.type 0.006 0.016 0.017 

Water.con (continuous) 0.008 0.019 0.021 

Water.con (factor) 0.012 0.029 0.032 
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Figure 38: Heatmap of correlations between predictor variables 

 

7.1.2. Model optimization 

So far, the variables erosion and Max_rain_d were excluded because of non-linearity, Max_rain_h because 

of the non-significance and the variables Max_rain_15, Max_rain_mad and permeability because of high 

correlations. As these variables have also been excluded by the stepwise regression, only the latter is 

interpreted, because it provides more information. In oder to investigate if more variables can be 

excluded, we look at the summary of the resulting model in Table 12. 

In the forward stepwise regression variables are added based on their importance to the model. So, the 

land use, altitude and Rain_20 are most important. There were even a few variables not included, which 

means that adding them would not benefit the model. These variables are the permeability, Max_rain_15 

and Max_rain_15_mad. Due to the correlation structure, it cannot be concluded that they do not 

contribute to the model. What’s more likely is that they do not contribute much more to the model than 

the other rain variables. For example, Rain_20 is one of the most important variables and is highly 

correlated with Max_rain_15. By including Rain_20 most of the explanatory power of Max_rain_15 is 

included in the model as well. 

Usually in linear regression, we could calculate for each variable and class how much the probability 

(flood risk) would change, if it would rise by 1. However, with that many interactions, it would depend on 

other variables as well, so we would need interaction terms to calculate it. This on the other hand leads 
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to a massive increase in multicollinearity, represented by the general variation inflation factor (GVIF) 

(Appendix 12.1.) and is therefore not analysed further. 

Table 12: Summary of the stepwise logistic regression model with the original variables 

Coefficients: 
                         Estimate Std. Error z value Pr(>|z|)     
(Intercept)            -3.866e+00  4.339e-01  -8.911  < 2e-16 *** 
Forest      6.251e-02  9.923e-02   0.630  0.52871     
Wetland      2.589e-01  9.607e-01   0.269  0.78756     
Water     -1.526e+01  1.660e+02  -0.092  0.92674     
Arable land     9.471e-01  9.098e-02  10.410  < 2e-16 *** 
Grassland     7.455e-01  1.022e-01   7.295 2.99e-13 *** 
Het.agr.land     8.856e-01  1.020e-01   8.686  < 2e-16 *** 
Altitude               -2.428e-03  1.815e-04 -13.374  < 2e-16 *** 
Rain_20                 1.699e-01  2.106e-02   8.065 7.30e-16 *** 
Alternating     2.235e+00  3.154e-01   7.085 1.39e-12 *** 
Alternating wet    2.532e+00  3.234e-01   7.830 4.88e-15 *** 
Very dry    -1.234e+01  2.448e+02  -0.050  0.95978     
Very dry to dry    2.857e+00  4.602e-01   6.208 5.35e-10 *** 
Dry      2.447e+00  3.165e-01   7.733 1.05e-14 *** 
Dry to moderately dry   2.459e+00  5.008e-01   4.910 9.09e-07 *** 
Moderately dry    2.001e+00  3.105e-01   6.442 1.18e-10 *** 
Moderately dry to med.  1.785e+00  3.701e-01   4.822 1.42e-06 *** 
Medium    1.957e+00  3.111e-01   6.290 3.17e-10 *** 
Medium to mod. wet   2.517e+00  3.768e-01   6.680 2.38e-11 *** 
Moderately wet   2.209e+00  3.241e-01   6.816 9.33e-12 *** 
Moderately wet o wet   1.954e+00  6.617e-01   2.954  0.00314 **  
Wet     2.079e+00  3.384e-01   6.145 8.01e-10 *** 
Wet to very wet   3.290e+00  8.115e-01   4.054 5.03e-05 *** 
Very wet    3.080e+00  4.226e-01   7.288 3.13e-13 *** 
Others    5.837e+00  1.623e+03   0.004  0.99713     
Alluvial soil    1.147e+00  2.762e-01   4.153 3.28e-05 *** 
Gley      9.251e-01  2.943e-01   3.143  0.00167 **  
Atypical soil    1.661e+00  2.948e-01   5.633 1.77e-08 *** 
Brown soil     1.102e+00  2.588e-01   4.257 2.07e-05 *** 
Pseudogley     1.059e+00  2.628e-01   4.030 5.58e-05 *** 
Soil form complex    6.313e-01  3.310e-01   1.907  0.05650 .   
Randzina and rangier   -3.546e-01  4.929e-01  -0.720  0.47179     
Bog      1.354e+00  4.132e-01   3.277  0.00105 **  
Others    -1.523e+01  7.184e+02  -0.021  0.98308     
Sand      2.841e-01  6.341e-02   4.480 7.47e-06 *** 
Clay     -1.469e+00  2.715e-01  -5.409 6.33e-08 *** 
Silt      1.872e-01  5.839e-02   3.206  0.00135 **  
Others    -1.152e-01  1.728e-01  -0.667  0.50480     
Slope                  -9.550e-03  1.582e-03  -6.036 1.58e-09 *** 
Depth                   1.847e-01  3.443e-02   5.364 8.14e-08 *** 
Rain_30                 2.580e-01  5.125e-02   5.033 4.82e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Before the optimization of the model is finished, we will look at the GVIF. As a rule of thumb the GVIF 

(second column) should not be higher than 4 to 10. However, according to Fox and Monette (1992), if the 

degrees of freedom (Df) are higher than 1 than the weighted GVIF (fourth column) should be used. In this 

case, the values there should not be greater than 2 to 3. While usually interaction terms have to be added 

to such a model, including them increases the GVIF far over the accepted threshold (see Annex 12.1.). By 

centring the variables (subtracting their mean value from them) and excluding variables that increase the 

GVIF too much, it is possible to include interaction terms in the model (Annex 12.2.). Nevertheless, the 
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resulting model has too few variables, which would mean a loss of quality. So, only models without 

interaction terms are analysed. 

In Table 13, we can see that the water condition and soil type have a very high GVIF with water.con at 52 

but they also have more than 1 Df and in their fourth column the GVIF is actually below 2. With that, the 

pseudo R² of the model is at 11.42% for McFadden’s to 27.10% for Nagelkerke’s, which is still far from 

being good (Table 14). 

Table 15 shows us the output of the “Anova”-function of the “car”-package (Fox et al. 2018). There, 

likelihood-ratio chi-square-tests are calculated, which test the goodness of fit of each variable to the 

model. A higher value at the column “LR Chisq” indicates a better fit and is based on the ratio of observed 

to expected frequencies (Colman 2009). These are then tested against the Null-hypothesis of no 

association between the explanatory and the target variable, which every single variable from our model 

clearly rejects by showing a high significance. With 463.80 the land use provides the best fit followed by 

the altitude (186.26) and water conditions (176.33). Rain_20 is now on the same level as the soil type and 

texture at 66 to 68. The slope, depth and Rain_30 provide the worst fit, but they prove to be still 

significantly associated with pluvial flood damages. 

Table 13: GVIF of the stepwise logistic regression model with the original variables 

                          GVIF Df GVIF^(1/(2*Df)) 
as.factor(Land.use)   2.010472  6        1.059924 
Altitude              1.822650  1        1.350056 
Rain_20               1.510185  1        1.228896 
as.factor(Water.con) 52.149060 16        1.131524 
as.factor(Soil.type) 17.210586  9        1.171265 
as.factor(Soil.text)  3.030768  4        1.148667 
Slope                 1.284897  1        1.133533 
Depth                 2.965824  1        1.722157 
Rain_30               1.473060  1        1.213697 

Table 14: Pseudo R² of the stepwise logistic regression model with the original variables 

                             Pseudo.R.squared 
McFadden                             0.114206 
Cox and Snell (ML)                   0.248890 
Nagelkerke (Cragg and Uhler)         0.271001 

Table 15: Anova of the stepwise logistic regression model with the original variables 

                     LR Chisq Df Pr(>Chisq)     
as.factor(Land.use)    463.80  6  < 2.2e-16 *** 
Altitude               186.26  1  < 2.2e-16 *** 
Rain_20                 66.04  1  4.411e-16 *** 
as.factor(Water.con)   176.33 16  < 2.2e-16 *** 
as.factor(Soil.type)    67.93  9  3.864e-11 *** 
as.factor(Soil.text)    66.94  4  1.004e-13 *** 
Slope                   37.53  1  8.981e-10 *** 
Depth                   29.79  1  4.806e-08 *** 
Rain_30                 25.80  1  3.787e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

In our model with aggregated classes, the variables Max_rain_15 and Max_rain_15_mad were also excluded 

in the stepwise regression, but this time the permeability was included (Table 16). While land use 

remained the most important variable, water conditions and soil types lost importance (as they were 

simplified the most). As the remaining soil type, pseudogley was included by the stepwise regression, but 

does not show any significance as it is slightly higher than the largest significance code of 0.1. 
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The GVIFs of all variables are lower than the threshold, even the ones with more Dfs (Table 17). The 

resulting pseudo R² is a bit lower than the first model with 9.68% for the McFadden R² and 23.45% for 

Nagelkerke’s (Table 18). 

At the Table 19 of the Anova analysis it becomes clearer how much the water conditions and soil type 

suffered from the aggregation. From one of the best goodness of fit-values of 176.33 the water conditions 

dropped to 15.38 and lost a lot of significance. The soil type dropped from 67.93 to 2.58 and lost any 

previous significance. The newly added permeability shows a goodness of fit of only 11.64 (the second 

lowest model) but it is more significant than the water conditions. Overall, the aggregation of classes has 

led to a loss of information and performs worse than the model with original classes. This confirms that 

the general linear model is appropriate to handle continuous and categorical predictors and requires no 

aggregation of variables to improve model fitting.       

Table 16: Summary of the stepwise logistic regression model with the aggregated variables 

Coefficients: 
                        Estimate Std. Error z value Pr(>|z|)     
(Intercept)            -2.158e-01  2.196e-01  -0.983 0.325812     
Arable land     9.175e-01  5.715e-02  16.055  < 2e-16 *** 
Grassland     6.706e-01  6.440e-02  10.413  < 2e-16 *** 
Het.agr.land     8.711e-01  6.606e-02  13.187  < 2e-16 *** 
Others    -2.394e-01  9.462e-02  -2.530 0.011409 *   
Altitude               -2.053e-03  1.673e-04 -12.273  < 2e-16 *** 
Rain_20                 1.614e-01  2.058e-02   7.842 4.43e-15 *** 
Slope                  -1.038e-02  1.520e-03  -6.831 8.41e-12 *** 
Depth                   1.643e-01  2.983e-02   5.507 3.64e-08 *** 
Sand     3.691e-01  6.254e-02   5.902 3.60e-09 *** 
Silt     2.546e-01  5.430e-02   4.688 2.76e-06 *** 
Others    -2.245e-01  1.249e-01  -1.797 0.072304 .   
Permeab.               -5.561e-02  1.631e-02  -3.411 0.000648 *** 
Rain_30                 2.529e-01  5.003e-02   5.056 4.29e-07 *** 
Medium    -2.509e-01  8.574e-02  -2.927 0.003426 **  
Wet    -9.050e-02  1.097e-01  -0.825 0.409596     
Others    -8.029e+00  1.195e+02  -0.067 0.946415     
Pseudogley    1.035e-01  6.452e-02   1.604 0.108765     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Table 17: GVIF of the stepwise logistic regression model with the aggregated variables 

                         GVIF Df GVIF^(1/(2*Df)) 
as.factor(Land.use)  1.727765  4        1.070744 
Altitude             1.590844  1        1.261287 
Rain_20              1.500480  1        1.224941 
Slope                1.266676  1        1.125467 
Depth                2.378056  1        1.542095 
as.factor(Soil.text) 1.929295  3        1.115749 
Permeab.             2.329354  1        1.526222 
Rain_30              1.473223  1        1.213764 
as.factor(Water.con) 3.046012  3        1.203987 
as.factor(Soil.type) 1.322107  1        1.149829 

Table 18: Pseudo R² of the stepwise logistic regression model with the aggregated variables 

                             Pseudo.R.squared 
McFadden                            0.0968373 
Cox and Snell (ML)                  0.2154740 
Nagelkerke (Cragg and Uhler)        0.2346170 
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Table 19: Anova of the stepwise logistic regression model with the aggregated variables 

                     LR Chisq Df Pr(>Chisq)     
as.factor(Land.use)    443.23  4  < 2.2e-16 *** 
Altitude               155.33  1  < 2.2e-16 *** 
Rain_20                 62.32  1  2.914e-15 *** 
Slope                   48.14  1  3.965e-12 *** 
Depth                   31.24  1  2.284e-08 *** 
as.factor(Soil.text)    49.89  3  8.436e-11 *** 
Permeab.                11.64  1  0.0006453 *** 
Rain_30                 25.95  1  3.497e-07 *** 
as.factor(Water.con)    15.38  3  0.0015207 **  
as.factor(Soil.type)     2.58  1  0.1081224     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

   

7.1.3. Prediction diagnostics 

Before entering into the prediction diagnostic values, it is important to know how the predicted values are 

distributed. Figure 39 shows probability density plots of both models. It can be noticed that in the second 

model there are fewer cells with a very low risk but slightly more with a risk greater than 60%, but 

overall, both models are rather similar. 

 

Figure 39: Density-plots of the logistic regressions (left first, right second model) 

 

After the partition into training and test set, the test set is predicted and the results are shown in Table 

20. Even with smaller pseudo R² values, the second model with aggregated classes reaches performance 

values very similar to the first model. The balanced accuracy (AUC) changes only slightly between cut-offs 

and models. Determining whether their AUCs of ~62% are good or bad depends considerably on the goal of 

the study. Baldwin (2009), who predicted the distribution of wildlife, classified an AUC lower than 70% as 

“uninformative”. Whether this classification applies to our study will be assessed with the risk maps a bit 

later. With a larger cut-off fewer cells are classified as flood damaged and so the sensitivity gets lower. At 

the same time, the specificity gets larger, because more cells are classified as no-flood damage. While the 

balanced accuracy stays the same, the accuracy grows with the specificity, because of the imbalance in 

the flood damage data. 
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Table 20: Prediction performance of logistic regression 

 Logistic Regression 

Cut-off Accuracy (in %) Sensitivity (in %) Specificity (in %) FAR (in %) AUC (in %) 

0.4 44.97 85.27 38.70 61.30 61.98 

0.5 55.45 71.71 52.92 47.14 62.31 

0.6 68.28 55.04 70.34 29.90 62.69 

 Logistic Regression with aggregated classes 

0.4 45.28 84.50 39.18 60.82 61.84 

0.5 55.29 73.26 52.50 47.50 62.88 

0.6 67.34 56.59 69.02 30.98 62.80 

 

To better visualize the results, the balanced accuracy can be plotted as a typical ROC (Receiver Operating 

Characteristics) –curve (Figure 40). If the model would predict each cell correctly, the black line would 

reach the upper left corner, where the area under the curve (AUC) is 100%. The grey line symbolizes an 

AUC of 50%, corresponding to a prediction per chance. 

Figure 41 shows the predicted risks of pluvial flood damages for the whole study area. The colour scale 

has been chosen in a way to reflect the rather uniform distribution of the predictor (Fig. 32), by using 

equally-spaced classes (that have a rather constant frequency as well) and red-shadings above the optimal 

cut-off-value of 0.5. The resulting probability maps are very similar, but as the density plots already 

indicated, in the second model there are fewer cells with very low risks. Additionally there seem to be 

more cells with a higher risk in the centre regions of Upper Austria than in the first model. In the west and 

east however the risk is calculated lower than in the first model. With this, it cannot be said that the 

results are “uninformative”. Even when 62% is not a high AUC value, the model manages to identify high 

risk regions. 

 

Figure 40: ROC-plots of the logistic regressions at the 0.5 cut-off. Left panel: first maodel, 

right panel: second model 
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Figure 41: Pluvial flood probability map of the first (left) and second regression model 

(right). 

 

 

7.2. Random forest 

7.2.1. Model optimization 

In random forests, the contribution of each variable to the output of the model cannot be determined as 

easily as in logistic regression. There are two methods in the randomForest-package to calculate the 

importance of each variable. Both of them have their pros and cons. The first measure is the permutation 

importance (Figure 42, first and third panel). It is calculated by permuting (i.e. randomly shuffling) the 

variable and measuring the difference in prediction accuracy before and after the permutation. The idea 

behind this approach is that the prediction accuracy must decrease greatly if the values of an important 

variable are randomly mixed. However, this importance measure might be biased in case of correlated 

predictors (Strobl et al. 2008). The second importance measure, shown in the right panels of Figure 3, is 

called impurity or “Gini” importance, and is based on the so-called “Gini” index measuring the mean of 

the individual trees’ improvement in the splitting criterion produced by each variable. If one variable is 

important, the Gini importance index will decrease more than for other, less important variables. The 

main disadvantage of this approach is that it is biased in favour of continuous variables and variables with 

more categories (Strobl et al. 2007). 

As it can be seen from Figure 42, four out of the six most important variables are precipitation variables. 

To lower the correlations among precipitation variables for the permutation importance (first and third 

panel), it was tested how the model behaves when excluding Max_rain_15 and Max_rain_15_mad as in the 

stepwise logistic regression model. But this had only marginal effects on permutation importance. Apart 

from precipitation indices, altitude, erosion and slope are highly ranked by both importance measures. 

Interestingly, land use is only in the middle of the ranking. Water conditions and soil parameters 

(permeability, type, texture, and depth) appear at the end of the ranking and seem to have little effect 

on the predictions. Finally, the second model based on aggregated classes (third and fourth panel) doesn’t 

show many differences compared to the first model based on original classes (first and second panel). 
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Figure 42: Predictor significances of the first RF-model with original classes (a) and the 

second RF-model with aggregated classes (b) 

 

(a)   Random forest with original classes  

(b)   Random forest with aggregated classes  
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7.2.2. Prediction diagnostics 

The prediction diagnostics for the random forest can be handled in the same way as in the logistic 

regression. At the density plots (Figure 43), the downside of not using weights is illustrated. Only very few 

cells get votes for the flood damage classification, so the cut-offs have to be chosen lower. 

Without weights the balanced accuracies vary more between each cut-off (Table 21). The highest 

balanced accuracy (67.38%) can be achieved at the cut-off of 0.15, which is 4-5% higher than for the 

logistic regression, with a sensitivity of 67.90% and a specificity of 66.86%. For comparison, the FAR is 

33.14%, showing that the risk of false alarms is rather low. The other prediction performance values are 

quite similar to the ones of the regression models: the sensitivity drops with higher cut-off, while 

specificity and accuracy grow. All in all, the first RF-model reaches slightly better values, but the 

differences are rather small. 

The AUCs are illustrated in Figure 44. Again, there can be no real difference spotted between the two 

models. Compared to the regression models the AUC is slightly larger and the corner of the “curve” is 

located more at the bottom. 

The risk maps also have to be adjusted to the unbalanced data, because without weights, a calculated 

probability of 30% is already considered high (Figure 45). A colour scale comparable to the one for logistic 

regression has been obtained by using equally-frequent classes and a red-shading above the optimal cut-

off-value of 0.15. Due to the ability of including Max_rain_d, the region of the 2013 event has a high risk 

too. Apart from that, the risk maps are very similar. The highest risks are located at the locations of the 

events of 2008 and 2011 and the mountainous regions have a very low risk. 

 

 

Figure 43: Density-plots of the first (left) and second RF-model (right) 
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Table 21: Prediction performance of classification forest. Best model marked in red. 

 Classification forest 

Cut-off (in %) Accuracy (in %) Sensitivity (in %) Specificity (in %) FAR (in %) AUC (in %) 

10 52.75 83.45  47.96 52.04 65.71 

15 67.00 67.90 66.86 33.14 67.38 

20 76.66 52.20 80.48 19.52 66.34 

30 84.78 26.06 93.94 06.06 60.00 

 Classification forest with aggregated classes 

10 52.77 84.84 47.77 52.23 66.30 

15 69.39 64.42 70.16 29.84 67.29 

20 77.80 52.82 81.70 17.68 67.26 

30 85.04 26.14 94.23 05.98 60.19 

 

Figure 44: ROC-plots of the RF-models (left first, right second model) at the 0.2 cut-off 

 

  

Figure 45: Pluvial flood probability map of the first (left) and second RF-model (right) 
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8. Discussion and conclusions 

8.1. Discussion of the approach 

Our analysis is based on insurance claims from the Austrian Hail Insurance. Zischg et al. (2018) tested 

insurance claims against inundation modelling and concluded that using these claims has a lot of 

advantages over inundation modelling. Damage claims were also used as target variable by Abebe, Kabir, 

and Tesfamariam (2018) and Bernet, Prasuhn, and Weingartner (2017). While the latter didn’t find an 

optimal solution on dividing pluvial and fluvial floods and in the end used the distance to the next river or 

lake as indicator, we used a visual determination based on shape around rivers and mostly ‘DORIS Atlas 

4.0’ (2018). 

Importance of predictor variables 

The best performing regression model consists of nine predictors, which have been automatically selected 

by the stepwise regression algorithm (Table 12). Their order in the regression equation, therefore, 

corresponds to the relative importance of catchment characteristics in terms of predictive performance. 

However, the importance for predictive performance may not be seen as a straightforward evaluation of 

process controls, because of intercorrelations between catchment characteristics, different accuracy of 

catchment characteristics and other effects on model fitting. We therefore included information of single 

effect models (Table 9) and heat map analysis (Figure 38) in the interpretation to partially account for 

these effects.  

From the results, land use, which is represented by six classes, is the most important linear predictor. The 

most significant class is Arable land, followed by heterogeneous agricultural land (Het.agr.land) and 

Grassland. All correspond to agricultural areas and show an increased flood risk. As our pluvial flood data 

is based on reports of flooded agricultural land these predictors do not contribute much to the 

interpretation on how they occur, they rather lead the model on the right path. Altitude is the next 

important predictor. It has a negative effect on flood risk, indicating that elevated areas are less prone to 

pluvio-flood damage, as one would expect.  

From the number of precipitation characteristics, the number of heavy, short-term (15 min) rainfall 

events exceeding 20mm (Rain_20) is the next important predictor. It is strongly correlated with the 

maximum 15 minute precipitation (Max_rain_15), which is masked in the stepwise model, and quite 

strongly correlated with the number of 30 mm events (Rain_30) as well. These variables indicate high 

rainfall intensities, which strongly increase the risk of pluvial flooding, as opposed to persistent low 

intensity rainfall, which are not selected in the model. 

Water conditions (Water.con) are represented by 16 classes. While at the location analysis and single 

models it seem that wet soils increase the pluvial flood risk, the logistic regression gives every class a 

positive sign and similar estimate, except from the very dry soils which decrease the flood risk. By 

aggregating water conditions, it lost a lot of its significance, giving it to depth and permeability. So, even 

if it was excluded from the model, the other two variables would compensate some of the explanatory 

power and they are less ambiguous. 

Soil type (Soil.type) consists of nine classes, but not all of them have a significant effect on flood risk. 

Likely, some of the classes are too rare in the study area to be considered by the model. From all classes, 

Alluvial soil, Gley, Atypical soil, Brown soil, and Pseudogley have a significantly positive effect and 

therefore tend to increase flood risk. Soil texture (Soil.text) consists of four classes. Sand and silt increase 

flood risk, while clay decreases flood risk. These effects do not correspond with our expectation from a 

process perspective and may be caused by their co-occurrence with other landscape characteristics. 

Hence, this variable needs to be interpreted with caution. 

The remaining two significant variables measure catchment characteristics on a continuous scale. Slope 

has a strong negative effect on flood risk, indicating that flat areas are most prone to pluvio-flood 
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damage, which corresponds well with hydrological expectation. However, soil depth has a positive effect 

on pluvio-flood damage. In the model equation, it seems rather an indicator of good quality agricultural 

areas than representing the effect of soil conditions on flood damage.  

Besides a slightly different order of the variables, there is no big difference between the two models in 

the logistic regression. The main difference is that when aggregating water conditions the variable gets 

less significant and is replaced by permeability and depth. The second model has a slightly lower pseudo 

R²-value, but at the pluvial flood prediction they are very similar. Overall, land use, topography, short-

term (15 min) precipitation intensity and soil type are the most important characteristics in the logistic 

regression model. In addition, either soil water conditions or permeability and depth are significant 

predictors of pluvial flood risk. 

The random forest model shows quite similar results. According to the permutation importance index, 

peak rain intensity (Max_rain_15) and altitude are the most important predictors. Hourly and daily rain 

sum (Max_rain_h and Max_rain_d) are the next important predictors, followed by erosion and slope. 

Interestingly, land use is only in the middle of the ranking and has a much lower effect than in logistic 

regression. Water conditions and soil parameters (permeability, type, texture, and depth) appear at the 

end of the ranking and seem to have little effect on the predictions. According to the Gini importance 

index, altitude and erosion are higher ranked as the precipitation indices. Apart from that, the 

importance of predictors is quite similar.  

Predictive performance 

We now assess to which degree our models are appropriate for performing a risk-mapping for the 

occurrence of pluvio-flood damage in Upper Austria. The prognoses maps of logistic regression and 

Random Forests have been shown in Figure 42 and 45. Both approaches lead to very similar patterns. High 

risk predictions are mostly located on arable land and in areas that were hit by more than one extreme 

rain event, which corresponds well to our expectations. Regions with high risks are located around clusters 

of reported cells. This means that on a large scale, the models are able to identify general regions with 

high risks, and predict these risks to surrounding areas with similar landscape characteristics. The location 

of risk-areas depends on rainfall characteristics, which constitute a climatic feature of the study area. By 

the event analysis and statistical modelling, intense or long-lasting rainfall events have been identified as 

the first-order controls of pluvio-flooding. Extreme precipitation events are necessary to trigger the 

genesis of pluvio-flood events. Landscape characteristics can be seen as a second-order control, which 

determines local infiltration and runoff. Locations with low infiltration and runoff are prone to a high 

pluvio-flood risk. The predictors used in both models reflect these controls, and can be well interpreted 

on hydrological grounds.   

Predictions may also be sensitive to linearity / nonlinearity of predictors and scale of measurements. The 

finding that both models lead to similar prediction shows the robustness of the predictions. By comparing 

logistic regression and random forests, we find that the predictors are rather insensitive to linearity 

/nonlinearity of relationships. The non-linear random forests show a slightly better predictive 

performance and should be preferred. We also assessed the possible influence of variable scales on 

predictive performance. The models with aggregated classes performed very similar to the models with 

original classes, hence the predictors are rather insensitive to scales of the chosen classification. Overall, 

the prediction maps provide robust estimates of pluvio-flood risk for the observation period. 

Despite these favourable characteristics, the predictive performance scores are rather modest. With a 

Nagelkerke R² of only 23% the logistic regression model explains only a small part of the variability of 

observed flood / non-flood damage cells in the cross-validation, and also its AUC performance of about 

62% is rather modest. In a similar way, the random forest reaches an AUC of 67% which is also not huge. It 

is surprising that the models which yield such robust predictions and whose predictors are all well 

interpretable in accordance with process reasoning lead to relatively modest performance scores. We 

think that the reason for the low scores is rather due to the short observation period. With a longer 

observation period, critical rainfall events would have happened in other grid cells leading to an increased 
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number of flood damaged cells. Using a subset of these cells corresponding to seven years of observation 

period constitutes an observational bias in the dependent variable that leads to two effects. First, the 

models are trained by a number of cells that are (on long-term) falsely classified as no-flood damage. This 

may make parameter estimates sub-optimal. The second effect is that true positive predictions could be 

in a cell which has not been flood damaged yet, but would be flood damaged in a few years. The 

theoretically true predictions are wrongly classified as false alarms, yielding to lower performance scores 

than being actually the case. Both effects are consequences of the observation bias which may explain the 

discrepancy of good prediction diagnostics and low performance scores. Because of that, we cannot say 

how well our risk map describes the actual risks. However, the magnitude of this bias can be roughly 

estimated from the effect of the number of flood damage cells on the coefficient of determination, 

defined as the ratio of the explained variance of the model by the total variance of the binary dependent 

variable (flood damage/no flood damage). When increasing the number of flood damage cells from 1/7 to 

2/7 of cells within the study area, the total variance of the dependent variable increases from 0.122 to 

0.204. This would increase the R² to a value of 56% when assuming that the model equation and the error 

variance (currently 0.089) remains unchanged. In reality, a more reliable classification of flood cells 

obtained by a longer observation period would also improve the parameter estimates, which would yield 

to a further increase of model performance.  

An indication about the appropriateness of assuming twice the number of flood cells for long-term 

observation is given by the temporal development of the number of flood damage cells during the seven 

years of observation shown in Figure 46. From the curve, the number of flood damage cells has not 

stabilised and further increases can be expected in future years. To what extend the number of flood 

events will increase is, however, subject to speculation. The last value actually corresponds to the major 

2013 flood event and could be interpreted as a peak at the end of the curve, thus representing an upper 

limit of the flood-affected area. The fact that the year 2013 was only moderate in terms of reported 

pluvial flood damage contradicts this interpretation and suggests that the seemingly stabilisation in the 

years before 2013 is simply caused by climate variability. In fact, the flat part of the curve corresponds to 

the three years with the lowest reported damages of the observation period. Overall, the observation 

period is certainly too short to safely judge about the future development of pluvial flood events and 

herby affected areas. This lack of data constitutes an observational bias that affects model fitting by 

both, an incorrect classification of presence/absence cells, and lacking information of process 

combinations of future pluvial flood events. Longer records are required to judge pluvial flood risks more 

safely. 
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Figure 46: Development of flood-cells over the observation period  

 

Models compared to the literature 

It is now interesting to compare the models to the literature. In comparison with the logistic regression, 

the random forest performs slightly better and reaches a balanced accuracy of 66-67%. When a cut-of 

value of 0.15 is chosen, the model with aggregated classes reaches a sensitivity (true alarm rate) of 68% 

with a false alarm rate of 33%. For comparison, Bernet et al. (2018) reached a maximal sensitivity (termed 

hit rate in their paper) of 79% and Zischg et al. (2018) reached sensitivities of 61-91% with false alarm 

ratios of 20-34%, depending on the catchment. While these studies use physically-based models at the 

event scale, our study uses statistical models on a regional scale. But overall, the performances are quite 

similar. A possible explanation is that all studies depend on climate and catchment characteristics. These 

characteristics are prone to measurement errors, which limit the performance of statistical and process-

based models.   

In this study it was found that with the currently available data pluvial flood damages are more likely to 

occur on agricultural land with a low altitude and low slopes. These were also two of the main factors 

identified by Abebe, Kabir, and Tesfamariam (2018). As a general rule, these flood damages are caused by 

short, heavy rainfalls, however, long lasting rainfalls might as well lead to pluvial flood damages in basin 

locations. An example of a pluvio-flood damage triggered by a long-lasting rainfall event is the event of 

2013. 

While the study design seems to be well suited to analyse the pluvial-flood damage risk, the accuracy of 

the method suffers from the short observation period. Both models largely depend on the rain events that 

occurred in these seven years. With a longer time period rain events would most probably also happen in 

grid cells, for which our models now predicted a low risk. Because of that, we cannot say how well our 

risk map describes the actual long-term flood risks of the study area. Another point is that some possibly 

important variables could not be used, like the macro relief or groundwater data from the BORIS dataset, 

due to their low spatial resolution (Section 3.2.2). Adding it to our final dataset would have reduced our 

dataset by about 1000 grid cells, which was not tolerable. Additionally, a generalisation beyond the study 

area may be difficult as many of the variables used are specifically collected or modelled in Austria. Other 

countries might have other data available. The models themselves worked as intended. Even when some 

variables got rescaled and the level of detail got reduced, the risk models and plots didn’t change much, 
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which indicates a high robustness of the models. High intercorrelations among climate and catchment 

characteristics posed a major challenge to modelling, which made interpretations of predictors difficult. 

Variable selection based on heat maps, stepwise regression and collinearity diagnostics and different types 

of predictor importance measures were used to address these problems and helped to identify robust 

predictors. 

 

8.2. Summary and conclusions 

In this study, we wanted to know how pluvial flood damages occur and if certain locations are more 

vulnerable than others. For the former we looked at the five biggest events and investigated the 

precipitation characteristics. For the latter a presence/absence raster was created and each location 

variable was parted in report and non-report. Finally, we used a linear and a non-linear statistical model 

to find out which variables are important and if it is possible to use them for creating a risk map. 

The basis for the event analysis was a high-resolution precipitation raster with a mesh size of 1 km and a 

temporal resolution of 15 minutes. Despite of its high resolution, the measurements are still prone to 

considerable errors, especially for intense rain events in greater distance from a gauge (Section 3.2.1).      

This hinders an accurate appraisal of the severity of events in terms of their return periods or occurrence 

probabilities. Plotting the number of damage reports by year and month allowed us to identify the five 

biggest events, which caused the most damages during our investigation period. While some events 

occurred in a season with above-average precipitation, other events occurred in a season with average or 

below-average precipitation. It turned out that the events of 2007, 2008 and 2011 were based on short but 

very heavy rainfall events (10-45l/m² in 15 minutes), which happened during a month that was not 

particularly rainy. The events of 2009 and 2013 have shown some rainfalls prior to the highest number of 

damage reports. The damages of 2009 were also caused by short and heavy precipitation (23.9l/m² in 15 

minutes) and the ones of 2013 by long-lasting, persistent but low intensity rainfall (0.9-2.4l/m² in 15 

minutes). The rainfall of June 2013 seems to have left an impact on the mean rain sums, as the month was 

especially rainy. On the other hand, June 2009 was also very rainy, but the event, which caused to 

damage claims, occurred in July, which didn’t stand out in monthly rain sums. So, most of the events 

consisted of short but heavy rainfalls, but especially the event of 2013 caused the most damage reports 

and consisted of a long lasting, low intensity rainfall. 

The location analysis has shown us that the flood damaged cells on which the detailed event analysis is 

based can be very different. The event that varied most from the others was the one of 2013. There was 

the least amount of heavy rainfall and it showed large differences in altitude and slope, but only small 

differences in erosion. For these flood damaged cells, the variables of permeability, depth and water 

conditions more likely described an ideal location for agriculture under normal conditions rather than 

pluvial flood risks. On the whole study area there are many indicators for locations with an increasing 

pluvial flood risk. These are: low altitudes, low slopes, high erosion, arable land, silt, low soil 

permeability and high soil depth. At the end of that chapter, some classes were aggregated due to their 

low numbers or to give more focus on other classes. 

Before the logistic regression, the variables of erosion and Max_rain_d were already excluded due to non-

linearity. At the beginning of the logistic regression, each variable is tested on significance and pseudo R² 

of their single models. Additionally, with the heat map it was possible to identify strong correlations and 

dependencies between the variables. After excluding Max_rain_h due to non-significance and 

Max_rain_15, Max_rain_15_mad and permeability, because of high correlations, the stepwise regression 

model was fitted. At first, interaction terms were included, but they increased the GVIF far over the 

acceptable threshold and therefore could not be included in further modelling. This led to a broader 

interpretation, concentrating only on significances and signs and not on accurate calculations with the 

estimates. The model was then fitted without interaction terms, but then correlations had to be taken 

into account in the interpretation. The most important variables turned out to be land use (agricultural 

land), altitude (with negative sign) and Rain_20 (with positive sign). This order didn’t change with the 
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aggregated classes. Most noticeable was the drop of importance of the water conditions and the 

integration of the permeability. Still, both of these models showed very similar prediction performances 

at a balanced accuracy of 62-63%. On the risk map, the focus of high risks lies on arable land that suffered 

heavy rain events and was on a low altitude. 

In comparison, the random forest, which is able to include non-linear variables, ranked Max_rain_d very 

high. However, the accuracy importance measure suffers under the interactions between the variables. 

Therefore, some highly correlated variables are ranked very high and close together, like the heavy rain 

variables. Due to these correlations the interpretation of significances is more difficult. Nevertheless, it 

can be said that high intensity rainfalls increase the risk as well as a low altitude, high daily rain sums, 

agricultural land and low permeability. Compared to the logistic regression, the daily rain sums are new 

and the permeability is ranked higher than the water conditions (even before aggregating). The result can 

be seen at the risk map, where the location of the event of 2013 is now highlighted as high risk, which was 

not the case at the logistic regression. The random forest also managed to get better prediction results at 

a balanced accuracy of 66-67%. 

Nevertheless, the interpretation of the variables was still easier at the logistic regression due to the 

stepwise approach. The random forest has the big advantage that it can include all variables, but the high 

correlations made the interpretation more difficult than in the regression models. Both models calculated 

high risks in the same regions even with some variables aggregated, which indicates a high robustness of 

the models. The reason, why they scored such a low balanced accuracy, lies more at the small observation 

period and possibly wrong reports than the models. 

The question whether statistical models are able to identify high risk areas cannot be answered definitely. 

Our models managed to predict certain regions with high risks, but didn’t manage to get a high prediction 

performance. With a wider observation period and additional predictors like groundwater or macro relief 

the answer will be more clearly. With a larger observation period, using count data to predict the risks 

can prove to be more beneficial as well.  

 

8.3. Outlook 

The analysis showed that the models appear well suited to represent the regional flood risk in Upper 

Austria. However, the models possibly suffer from the relatively short observation period, which could 

make predictions conditional to events in the observation period rather than presenting the long-term 

flood risk. In a future study, we would like to further assess the conditional dependence of predictors on 

the observation period, by segmented modelling or simulation. It would also be interesting to repeat the 

study once additional years of flood event data are available to analyse the sensitivity of the predictors to 

an augmented observation period. Knowing this sensitivity may be important to evaluate a possible risk 

mapping that may be obtained by applying the predictive models of this study to long-term climate 

indices, in order to characterise long-term pluvial flood risk in Upper Austria.  
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12. Annex 

12.1. GVIF of logistic regression with interaction terms 

                          GVIF Df GVIF^(1/(2*Df)) 
as.factor(Land.use)   2.030289  6        1.060791 
Altitude              3.302706  1        1.817335 
Rain_20               1.508753  1        1.228313 
as.factor(Water.con) 53.078285 16        1.132149 
as.factor(Soil.type) 17.768493  9        1.173343 
as.factor(Soil.text)  3.089783  4        1.151439 
Slope                16.146844  1        4.018314 
Depth                 2.972931  1        1.724219 
Rain_30               1.470836  1        1.212780 
Altitude:Slope       19.065746  1        4.366434 

 

12.2. GVIF of logistic regression with successful interaction terms 

                                   GVIF Df GVIF^(1/(2*Df)) 
as.factor(Land.use)            2.830919  4        1.138914 
Rain_30                        7.859832  1        2.803539 
Slope                          2.452103  1        1.565919 
Permeab.                       3.860027  1        1.964695 
Max_rain_15                    1.521284  1        1.233403 
as.factor(Land.use):Slope      4.766032  4        1.215541 
as.factor(Land.use):Permeab.   5.136856  4        1.226979 
as.factor(Land.use):Rain_30    4.810234  4        1.216945 
Rain_30:Permeab.               1.576794  1        1.255705 
Slope:Permeab.                 1.223370  1        1.106060 
Permeab.:Max_rain_15           1.495757  1        1.223011 
Rain_30:Max_rain_15            3.217693  1        1.793793 

 

                             Pseudo.R.squared 
McFadden                            0.0990865 
Cox and Snell (ML)                  0.2198840 
Nagelkerke (Cragg and Uhler)        0.2394180 
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